Previous |  Up |  Next

Article

Keywords:
positive systems; functional observers; unknown inputs; linear systems; LP problem
Summary:
This paper deals with the problem of designing positive functional observers for positive linear systems subject to unknown inputs. The order of the designed observer is equal to the dimension of the functional to be estimated. The designed functional observer is always nonnegative at any time and converges asymptotically to the real functional state vector. In fact, we propose a new positive reduced order observer for positive linear systems affected by unknown inputs. The proposed procedure is based on the positivity of an augmented system composed of dynamics of both considered system and proposed observer and also, on the unbiasedness of the estimation error by the resolution of Sylvester equation. Then existence conditions of such observers are formulated in terms of linear programming (LP) problem, where we use the Perron-Frobenius theorem applied to Metzler matrices. An algorithm that summarizes the different steps of the proposed positive functional observer design is given. Finally, numerical example and simulation results are given to illustrate the effectiveness of the proposed design method.
References:
[1] Arrow, K. J.: A dynamic proof of the Frobenius-Perron theorem for Metzler matrices. In: Probability, Statistics, and Mathematics, Academic Press 1989, pp 17-26. MR 1031275
[2] Back, J., Astolfi, A.: Design of positive linear observers for positive linear systems via coordinate transformations and positive realizations. SIAM J. Control Optim. 47 (2008), 345-373. DOI  | MR 2373473
[3] Caccetta, L., Foulds, R. L., Rumchev, G. V.: A positive linear discrete-time model of capacity planning and its controllability properties. Math. Comput. Model. 40 (2004), 217-226. DOI  | MR 2091538
[4] Canto, B., Coll, C., Sanchez, E.: Positive solutions of a discrete-time desciptor system. Int. J. Syst. Sci. 39 (2008), 81-88. DOI  | MR 2377901
[5] Carson, E. R., Cobelli, C., Finkelstein, L.: Modeling and identification of metabolic systems. Am.J. Physiol. 240 (1981), R120-R129. DOI 
[6] Darouach, M., Zasadzinski, M., Ali, H. Souley: Robust reduced order unbiased filtering via LMI. In: Proc. 6th European Control Conference, Porto 2001.
[7] Darouach, M.: Existence and Design of Functional Observers for Linear Systems. IEEE Trans. Automat. Control Process. 45 (2000), 940-943. DOI  | MR 1774138
[8] Dautrebande, N., Bastin, G.: Positive linear observers for positive linear systems. In: Proceedings of the European Control Conference, Karlsruhe, Germany, 1999.
[9] Ezzine, M., Darouach, M., Ali, H. Souley, Messaoud, H.: Time and Frequency domain design of functional filters. In: Proc. American Control Conference, Marriott Waterfront, Baltimore 2010. DOI  | MR 2829210
[10] Ezzine, M., Darouach, M., Ali, H. Souley, Messaoud, H.: A new positive linear functional filters design for positive linear systems. In: Proc. 22nd Mediterranean Conf. on Control and Automation, Palermo 2014, pp. 407-411.
[11] Ezzine, M., Ali, H. Souley, Darouach, M., Messaoud, H.: Positive unknown inputs filters design for positive linear systems. In: Proc. American Control Conference, Denver 2020, pp. 3369-3374. DOI 
[12] Ezzine, M., Ali, H. Souley, Darouach, M., Messaoud, H.: A new design of a positive functional filters for positive linear systems. In: Proc. International Conference on Control, Automation and Diagnosis (ICCAD), Grenoble 2021, pp. 1-4. DOI 
[13] Ezzine, M., Darouach, M., Ali, H. Souley, Messaoud, H.: Design of Positive Observers for Positive Linear Time-delay Systems. In: 9th International Conference on Systems and Control (ICSC) Caen 2021, pp. 548-552. DOI 
[14] Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications. Wiley, New York 2000. MR 1784150
[15] Haddad, W. M., Chellabonia, V. S.: Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal.: Real World Appl. 6 (2005), 35-65. DOI  | MR 2104542
[16] Hardin, H. M., Schuppen, J. H. van: Observers for linear positive systems. Linear Algebra Appl. 425 (2007), 571-607. DOI  | MR 2343058
[17] Hof, J. M. V.: Positive linear observers for linear compartmental systems. SIAM J. Control Optim. 36 (1998), 590-608. DOI  | MR 1616518
[18] Jacquez, A. J.: Compartmental Analysis in Biology and Medicine. Univ. Michigan Press. Ann Arbor 1985.
[19] Kaczorek, T.: Positive 1D and 2D Systems. Springer, London 2001.
[20] Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation and Application. Wiley, Berlin 2005.
[21] Krokavec, D., Filasova, A.: On unknown-input observer design for linear discrete-time positive systems. In: Proc. 13th APCA Int. Conf. on Automatic Control and Soft Computing, Ponta Delgada 2018, pp. 49-54. DOI  | MR 3913678
[22] Liu, L. J., Zhao, X.: Design of multiple-mode observer and multiple-mode controller for switched positive linear systems. IET Control Theory Appl. 13 (2019), 1320-1328. DOI  | MR 3931204
[23] Liu, P., Zhang, Q., Yang, X., Yang, L.: Passivity and optimal control of descriptor biological complex systems. IEEE Autom. Control 53 (2008), 122-125. DOI  | MR 2605135
[24] Luenberger, D. G.: Observers for multivariable systems. IEEE Autom. Control 11 (1966), 122-125. DOI  | MR 0441429
[25] Luenberger, D. G.: An introduction to observers. IEEE Autom. Control 16 (1971), 596-602. DOI 
[26] Luenberger, D. G.: Introduction to Dynamic systems: Theory, Models and Applications. John Wiley and Sons, New York 1979.
[27] Okamoto, Y., Imura, J. I., Okada-Hatakeyama, M.: Observer design of positive quadratic systems. In: Proc. European Control Conf., Alborg 2016, pp. 843-848. DOI 
[28] Shafai, B., Nazari, S., Oghbaee, A.: Positive unknown input observer design for positive linear systems. In: Proc. International conference on System theory, control and computing (ICSTCC), Cheile Gradistei 2015. DOI 
[29] Shafai, B., Nazari, S., Oghbaee, A.: State and unknown input disturbance estimation for positive linear systems. In: Proc. World Automation Congress, Rio Grande 2016, pp. 1-6. DOI 
[30] Tsui, C.: A new algorithm for the design of multi-functional observers. IEEE Automat. Control 30 (1985), 89-93. DOI  | MR 0777086
[31] Yi, N., Zhang, Q., Mao, K., Yang, D., Li, Q.: Analysis and control of an SEIR epidemic system with nonlinear transmission rate. Math. Comput. Model 50 (2009), 1498-1513. DOI  | MR 2583434
Partner of
EuDML logo