[1] Arrow, K. J.:
A dynamic proof of the Frobenius-Perron theorem for Metzler matrices. In: Probability, Statistics, and Mathematics, Academic Press 1989, pp 17-26.
MR 1031275
[2] Back, J., Astolfi, A.:
Design of positive linear observers for positive linear systems via coordinate transformations and positive realizations. SIAM J. Control Optim. 47 (2008), 345-373.
DOI |
MR 2373473
[3] Caccetta, L., Foulds, R. L., Rumchev, G. V.:
A positive linear discrete-time model of capacity planning and its controllability properties. Math. Comput. Model. 40 (2004), 217-226.
DOI |
MR 2091538
[4] Canto, B., Coll, C., Sanchez, E.:
Positive solutions of a discrete-time desciptor system. Int. J. Syst. Sci. 39 (2008), 81-88.
DOI |
MR 2377901
[5] Carson, E. R., Cobelli, C., Finkelstein, L.:
Modeling and identification of metabolic systems. Am.J. Physiol. 240 (1981), R120-R129.
DOI
[6] Darouach, M., Zasadzinski, M., Ali, H. Souley: Robust reduced order unbiased filtering via LMI. In: Proc. 6th European Control Conference, Porto 2001.
[7] Darouach, M.:
Existence and Design of Functional Observers for Linear Systems. IEEE Trans. Automat. Control Process. 45 (2000), 940-943.
DOI |
MR 1774138
[8] Dautrebande, N., Bastin, G.: Positive linear observers for positive linear systems. In: Proceedings of the European Control Conference, Karlsruhe, Germany, 1999.
[9] Ezzine, M., Darouach, M., Ali, H. Souley, Messaoud, H.:
Time and Frequency domain design of functional filters. In: Proc. American Control Conference, Marriott Waterfront, Baltimore 2010.
DOI |
MR 2829210
[10] Ezzine, M., Darouach, M., Ali, H. Souley, Messaoud, H.: A new positive linear functional filters design for positive linear systems. In: Proc. 22nd Mediterranean Conf. on Control and Automation, Palermo 2014, pp. 407-411.
[11] Ezzine, M., Ali, H. Souley, Darouach, M., Messaoud, H.:
Positive unknown inputs filters design for positive linear systems. In: Proc. American Control Conference, Denver 2020, pp. 3369-3374.
DOI
[12] Ezzine, M., Ali, H. Souley, Darouach, M., Messaoud, H.:
A new design of a positive functional filters for positive linear systems. In: Proc. International Conference on Control, Automation and Diagnosis (ICCAD), Grenoble 2021, pp. 1-4.
DOI
[13] Ezzine, M., Darouach, M., Ali, H. Souley, Messaoud, H.:
Design of Positive Observers for Positive Linear Time-delay Systems. In: 9th International Conference on Systems and Control (ICSC) Caen 2021, pp. 548-552.
DOI
[14] Farina, L., Rinaldi, S.:
Positive Linear Systems: Theory and Applications. Wiley, New York 2000.
MR 1784150
[15] Haddad, W. M., Chellabonia, V. S.:
Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal.: Real World Appl. 6 (2005), 35-65.
DOI |
MR 2104542
[16] Hardin, H. M., Schuppen, J. H. van:
Observers for linear positive systems. Linear Algebra Appl. 425 (2007), 571-607.
DOI |
MR 2343058
[17] Hof, J. M. V.:
Positive linear observers for linear compartmental systems. SIAM J. Control Optim. 36 (1998), 590-608.
DOI |
MR 1616518
[18] Jacquez, A. J.: Compartmental Analysis in Biology and Medicine. Univ. Michigan Press. Ann Arbor 1985.
[19] Kaczorek, T.: Positive 1D and 2D Systems. Springer, London 2001.
[20] Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation and Application. Wiley, Berlin 2005.
[21] Krokavec, D., Filasova, A.:
On unknown-input observer design for linear discrete-time positive systems. In: Proc. 13th APCA Int. Conf. on Automatic Control and Soft Computing, Ponta Delgada 2018, pp. 49-54.
DOI |
MR 3913678
[22] Liu, L. J., Zhao, X.:
Design of multiple-mode observer and multiple-mode controller for switched positive linear systems. IET Control Theory Appl. 13 (2019), 1320-1328.
DOI |
MR 3931204
[23] Liu, P., Zhang, Q., Yang, X., Yang, L.:
Passivity and optimal control of descriptor biological complex systems. IEEE Autom. Control 53 (2008), 122-125.
DOI |
MR 2605135
[24] Luenberger, D. G.:
Observers for multivariable systems. IEEE Autom. Control 11 (1966), 122-125.
DOI |
MR 0441429
[25] Luenberger, D. G.:
An introduction to observers. IEEE Autom. Control 16 (1971), 596-602.
DOI
[26] Luenberger, D. G.: Introduction to Dynamic systems: Theory, Models and Applications. John Wiley and Sons, New York 1979.
[27] Okamoto, Y., Imura, J. I., Okada-Hatakeyama, M.:
Observer design of positive quadratic systems. In: Proc. European Control Conf., Alborg 2016, pp. 843-848.
DOI
[28] Shafai, B., Nazari, S., Oghbaee, A.:
Positive unknown input observer design for positive linear systems. In: Proc. International conference on System theory, control and computing (ICSTCC), Cheile Gradistei 2015.
DOI
[29] Shafai, B., Nazari, S., Oghbaee, A.:
State and unknown input disturbance estimation for positive linear systems. In: Proc. World Automation Congress, Rio Grande 2016, pp. 1-6.
DOI
[30] Tsui, C.:
A new algorithm for the design of multi-functional observers. IEEE Automat. Control 30 (1985), 89-93.
DOI |
MR 0777086
[31] Yi, N., Zhang, Q., Mao, K., Yang, D., Li, Q.:
Analysis and control of an SEIR epidemic system with nonlinear transmission rate. Math. Comput. Model 50 (2009), 1498-1513.
DOI |
MR 2583434