Previous |  Up |  Next

Article

Title: Complexity of primal-dual interior-point algorithm for linear programming based on a new class of kernel functions (English)
Author: Guerdouh, Safa
Author: Chikouche, Wided
Author: Touil, Imene
Author: Yassine, Adnan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 59
Issue: 6
Year: 2023
Pages: 827-860
Summary lang: English
.
Category: math
.
Summary: In this paper, we first present a polynomial-time primal-dual interior-point method (IPM) for solving linear programming (LP) problems, based on a new kernel function (KF) with a hyperbolic-logarithmic barrier term. To improve the iteration bound, we propose a parameterized version of this function. We show that the complexity result meets the currently best iteration bound for large-update methods by choosing a special value of the parameter. Numerical experiments reveal that the new KFs have better results comparing with the existing KFs including $\log t$ in their barrier term. To the best of our knowledge, this is the first IPM based on a parameterized hyperbolic-logarithmic KF. Moreover, it contains the first hyperbolic-logarithmic KF (Touil and Chikouche in Filomat 34:3957-3969, 2020) as a special case up to a multiplicative constant, and improves significantly both its theoretical and practical results. (English)
Keyword: linear programming
Keyword: primal-dual interior-point methods
Keyword: kernel function
Keyword: complexity analysis
Keyword: large and small-update methods
MSC: 90C05
MSC: 90C51
idZBL: Zbl 07830567
idMR: MR4712965
DOI: 10.14736/kyb-2023-6-0827
.
Date available: 2024-02-26T11:09:50Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152260
.
Reference: [1] Anane, N.: Méthodes de points intérieurs pour la programmation linéaire basées sur les fonctions noyaux..(Magister Thesis), Ferhat Abbas University, Setif 2012.
Reference: [2] Amini, K., Haseli, K. A.: A new proximity function generating the best known iteration bounds for both large-update methods and small-update..ANZIAM J. 49 (2007), 259-270. MR 2408519,
Reference: [3] Amini, K., Peyghami, M. R.: An interior-point algorithm for linear optimization based on a new kernel function..Southeast Asian Bull. Math. 29 (2005), 651-667. MR 2188017
Reference: [4] Amini, K., Peyghami, M. R.: An interior-point method for linear programming based on a class of kernel functions..Bull. Austral. Math. Soc. 71 (2005), 139-153. MR 2127673,
Reference: [5] Amini, K., Peyghami, M. R.: Exploring complexity of large update interior-point methods for $P_*(\kappa)-$ linear complementarity problem based on kernel function..Appl. Math. Comput. 207(2) (2009), 501-513. MR 2489104,
Reference: [6] Bai, Y.Q., Ghami, M. El, Roos, C.: A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization..SIAM J. Optim. 15 (2004), 101-128. MR 2112978,
Reference: [7] Bai, Y. Q., Ghami, M. El, Roos, C.: A new efficient large-update primal-dual interior-point method based on a finite barrier..SIAM J. Optim. 13 (2002), 766-782. MR 1972215,
Reference: [8] Bai, Y. Q., Wang, G. Q.: Polynomial interior-point algorithms for $P_*(\kappa)$ horizontal linear complementarity problem..J. Comput. Appl. Math. 233 (2009), 248-263. MR 2568523,
Reference: [9] Bai, Y. Q., Wang, G. Q., Roos, C.: Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions..Nonlinear Anal. 70 (2009), 10, 3584-3602. MR 2502767,
Reference: [10] Benhadid, A., Saoudi, K.: A new parameterized logarithmic kernel function for linear optimization with a double barrier term yielding the best known iteration bound..Commun. Math. 28 (2020), 27-41. MR 4124288,
Reference: [11] Bouafia, M., Benterki, D., Yassine, A.: An efficient parameterized logarithmic kernel function for linear optimization..Optim. Lett. 12 (2018), 1079-1097. MR 3819677,
Reference: [12] Bouafia, M., Benterki, D., Yassine, A.: An efficient primal-dual interior-point method for linear programming problems based on a new kernel function with a trigonometric barrier term..J. Optim. Theory Appl. 170 (2016), 528-545. MR 3527709,
Reference: [13] Cai, X. Z., Li, L., Ghami, M. El, Steihaug, T., Wang, G. Q.: A new parametric kernel function yielding the best known iteration bounds of interior-point methods for the Cartesian $P_*(\kappa)-$LCP over symmetric cones..Pac. J. Optim. 13 (2017), 4, 547-570. MR 3743080
Reference: [14] Cai, X. Z., Wang, G. Q., Ghami, M. El, Yue, Y. J.: Complexity analysis of primal-dual interior-point methods for linear optimization based on a new parametric kernel function with a trigonometric barrier term..Abstr. Appl. Anal. (2014) Article ID 710158. MR 3226224,
Reference: [15] Cai, X. Z., Wang, G. Q., Zhang, Z. H.: Complexity analysis and numerical implementation of primal-dual interior-point methods for convex quadratic optimization based on a finite barrier..Numer. Algorithms 62 (2013), 289-306. MR 3011391,
Reference: [16] Cai, X. Z., Wu, L., Yue, Y. J., L, M. M., Wang, G. Q.: Kernel-function based primal dual interior- point methods for convex quadratic optimization over symmetric cone..J. Inequal. Appl. (2014), 308, 22 pp. MR 3359089
Reference: [17] Choi, B. K., Lee, G. M.: On complexity analysis of the primal-dual interior-point method for semidefinite optimization problem based on a new proximity function..Nonlinear Anal. 71 (2009), 2628-2640. MR 2672034,
Reference: [18] Choi, B. K, Lee, G. M.: On complexity analysis of the primal-dual interior-point method for second-order cone optimization problem..J. Korean Soc. Ind. Appl. Math. 14 (2010), 2, 93-111. MR 2719195
Reference: [19] Derbal, L., Kebbiche, Z.: Theoretical and numerical result for linear optimization problem based on a new kernel function..J. Sib. Fed. Univ. Math. Phys. 12 (2019), 2, 160-172. MR 3941774,
Reference: [20] Ghami, M. El, Bai, Y. Q., Roos, C.: Kernel-function based algorithms for semidefinite optimization..RAIRO Oper. Res. 43 (2009), 189-199. MR 2527862,
Reference: [21] Ghami, M. El, Guennoun, Z. A., Bouali, S., Steihaug, T.: Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term..J. Comput. Appl. Math. 236 (2012), 3613-3623. MR 2923494,
Reference: [22] Ghami, M. El, Ivanov, I. D., Roos, C., Steihaug, T.: A polynomial-time algorithm for LO based on generalized logarithmic barrier functions..Int. J. Appl. Math. 21 (2008), 99-115. MR 2408056
Reference: [23] Ghami, M.El., Ivanov, I. D., Melissen, J.B.M., Roos, C., Steihaug, T.: A polynomial-time algorithm for linear optimization based on a new class of kernel functions..J. Comput. Appl. Math. 224 (2009), 2, 500-513. MR 2492883,
Reference: [24] Ghami, M. El, Ivanov, I. D., Steihaug, T.: Primal-dual interior-point methods solver based on kernel functions for linear optimization..In: Proc. International multiconference on computer science and information technology, Mragowo 2009, pp. 743-749.
Reference: [25] Ghami, M. El, Roos, C.: Generic primal-dual interior-point methods based on a new kernel function..RAIRO Oper. Res. 42 (2008), 199-213. MR 2431399,
Reference: [26] Ghami, M. El., Roos, C., Steihaug, T.: A generic primal-dual interior-point method for semidefinite optimization based on a new class of kernel functions..Optim. Methods Softw. 25 (2010), 387-403. MR 2738833,
Reference: [27] Guerdouh, S., Chikouche, W., Kheirfam, B.: A full-Newton step infeasible interior-point algorithm based on a kernel function with a new barrier term..J. Appl. Math. Comput. 69 (2023), 2935-2953. MR 4617120,
Reference: [28] Guerdouh, S., Chikouche, W., Touil, I.: A primal-dual interior-point algorithm based on a kernel function with a new barrier term..Stat. Optim. Inf. Comput. 11 (2023), 773-784. MR 4601347,
Reference: [29] Guerdouh, S., Chikouche, W., Touil, I.: An efficient primal-dual interior-point algorithm for linear optimization problems based on a novel parameterized kernel function with a hyperbolic barrier term..2021. halshs-03228790 MR 4601347
Reference: [30] Hafshejani, S. F., Fatemi, M., Peyghami, M. R.: An interior-point method for $P_*(\kappa)-$linear complementarity problem based on a trigonometric kernel function..J. Appl. Math. Comput. 48 (2015), 111-128. MR 3340598,
Reference: [31] Hafshejani, S. F., Jahromi, A. F.: An interior-point method for $P_*(\kappa)-$horizontal linear complementarity problem based on a new proximity function..J. Appl. Math. Comput. 62 (2020), 281-300. MR 4056901,
Reference: [32] Karmarkar, N. K.: A new polynomial-time algorithm for linear programming.
Reference: [33] Keraghel, A.: Étude adaptative et comparative des principales variantes dans l'algorithme de karmarkar..Ph.D. Thesis, Grenoble Institute of Technology, 1989.
Reference: [34] Kheirfam, B.: Primal-dual interior-point algorithm for semidefinite optimization based on a new kernel function with trigonometric barrier term..Numer. Algorithms 61 (2012), 659-680. MR 2995226,
Reference: [35] Kheirfam, B., Haghighi, M.: A full-Newton step infeasible interior-point method for linear optimization based on a trigonometric kernel function..Optimization 65 (2016), 4, 841-857. MR 3459385,
Reference: [36] Kheirfam, B., Moslemi, M.: A polynomial-time algorithm for linear optimization based on a new kernel function with trigonometric barrier term..Yugosl. J. Oper. Res. 25 (2015), 2, 233-250. MR 3366826,
Reference: [37] Lesaja, G., Roos, C.: Unified analysis of kernel-based interior-point methods for $P_*(\kappa)-$linear complementarity problems..SIAM J. Optim. 20 (2010), 6, 3014-3039. MR 2735942,
Reference: [38] Li, X., Zhang, M. W.: Interior-point algorithm for linear optimization based on a new trigonometric kernel function..Oper. Res. Lett. 43 (2015), 471-475. MR 3394180,
Reference: [39] Peng, J., Roos, C., Terlaky, T.: A new class of polynomial primal-dual methods for linear and semidefinite optimization..European J. Oper. Res. 143 (2002), 234-256. MR 1934033,
Reference: [40] Peng, J., Roos, C., Terlaky, T.: Primal-dual interior-point methods for second order conic optimization based on self-regular proximities..SIAM J. Optim. 13 (2002), 1, 179-203. MR 1922760,
Reference: [41] Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual interior-point Algorithms..Princeton University Press, Princeton, New Jersey 2002. MR 1938497
Reference: [42] Peyghami, M. R.: An interior-point approach for semidefinite optimization using new proximity functions..Asia-Pac. J. Oper. Res. 26 (2009), 3, 365-382. MR 2552872,
Reference: [43] Peyghami, M. R., Amini, K.: A kernel function based interior-point methods for solving $P_*(\kappa)-$linear complementarity problem..Acta Math. Appl. Sin. Engl. Ser. 26 (2010), 1761-1778. MR 2672816,
Reference: [44] Peyghami, M. R., Hafshejani, S. F.: Complexity analysis of an interior-point algorithm for linear optimization based on a new proximity function..Numer. Algorithms. 67 (2014), 33-48. MR 3252835,
Reference: [45] Peyghami, M. R., Hafshejani, S. F., Chen, S.: A primal-dual interior-point method for semidefinite optimization based on a class of trigonometric barrier functions..Oper. Res. Lett. 44 (2016), 3, 319-323. MR 3503107,
Reference: [46] Peyghami, M. R., Hafshejani, S. F., Shirvani, L.: Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function..J. Comput. Appl. Math. 255 (2014), 74-85. MR 3093405,
Reference: [47] Roos, C.: A full-Newton step $\mathcal{O}(n)$ infeasible interior-point algorithm for linear optimization..SIAM J. Optim. 16 (2006), 4, 1110-1136. MR 2219135,
Reference: [48] Roos, C., Terlaky, T., Vial, J. Ph.: Theory and Algorithms for Linear Optimization..In: An Interior-point Approach, John Wiley and Sons, Chichester 1997. MR 1450094
Reference: [49] Touil, I., Benterki, D., Yassine, A.: A feasible primal-dual interior-point method for linear semidefinite programming..J. Comput. Appl. Math. 312 (2017), 216-230. MR 3557876,
Reference: [50] Touil, I., Chikouche, W.: Novel kernel function with a hyperbolic barrier term to primal-dual interior-point algorithm for SDP problems..Acta Math. Appl. Sin. Engl. Ser. 38 (2022), 44-67. MR 4375772,
Reference: [51] Touil, I., Chikouche, W.: Primal-dual interior-point methods for semidefinite programming based on a new type of kernel functions..Filomat. 34 (2020), 12, 3957-3969. MR 4290825,
Reference: [52] Vieira, M. V. C.: Interior-point methods based on kernel functions for symmetric optimization..Optim. Methods Softw. 27 (2012), 3, 513-537. MR 2916858,
Reference: [53] Wang, G. Q., Bai, Y. Q., Liu, Y., Zhang, M.: A new primal-dual interior-point algorithm for convex quadratic optimization..J. Shanghai Univ. (English Edition), 12 (2008), 3, 189-196. MR 2422971,
Reference: [54] Wang, G. Q., Li, M. M., Yue, Y. J., Cai, X. Z.: New complexity analysis of interior-point methods for the Cartesian $P_*(\kappa)-$SCLCP..J. Inequal. Appl. (2013) Article number 285. MR 3081699
Reference: [55] Wang, G. Q., Zhu, D. T.: A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic SDO..Numer. Algorithms 57 (2011), 4, 537-558. MR 2819461,
Reference: [56] Wright, S. J.: Primal-dual interior-point methods..SIAM, 1997. MR 1422257,
Reference: [57] Ye, Y. Y.: Interior-point algorithms. Theory and Analysis..Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley and Sons, New York 1997. MR 1481160
.

Files

Files Size Format View
Kybernetika_59-2023-6_3.pdf 659.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo