Title: | On feebly nil-clean rings (English) |
Author: | Sheibani Abdolyousefi, Marjan |
Author: | Pouyan, Neda |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 1 |
Year: | 2024 |
Pages: | 87-94 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices. (English) |
Keyword: | orthogonal idempotent matrix |
Keyword: | nilpotent matrix |
Keyword: | matrix ring |
Keyword: | feebly nil-clean ring |
MSC: | 15A23 |
MSC: | 15B33 |
MSC: | 16U99 |
DOI: | 10.21136/CMJ.2023.0215-22 |
. | |
Date available: | 2024-03-13T10:04:05Z |
Last updated: | 2024-03-18 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152269 |
. | |
Reference: | [1] Abyzov, A. N., Mukhametgaliev, I. I.: On some matrix analogs of the little Fermat theorem.Math. Notes 101 (2017), 187-192. Zbl 1365.16024, MR 3608014, 10.1134/S0001434617010229 |
Reference: | [2] Arora, N., Kundu, S.: Commutative feebly clean rings.J. Algebra Appl. 16 (2017), Article ID 1750128, 14 pages. Zbl 1368.13006, MR 3660411, 10.1142/S0219498817501286 |
Reference: | [3] Breaz, S., Călugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings.Linear Algebra Appl. 439 (2013), 3115-3119. Zbl 1355.16023, MR 3116417, 10.1016/j.laa.2013.08.027 |
Reference: | [4] Chen, H.: Rings Related Stable Range Conditions.Series in Algebra 11. World Scientific, Hackensack (2011). Zbl 1245.16002, MR 2752904, 10.1142/8006 |
Reference: | [5] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings.J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. Zbl 1382.16035, MR 3661645, 10.1142/S021949881750178X |
Reference: | [6] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020 |
Reference: | [7] Han, J., Nicholson, W. K.: Extensions of clean rings.Commun. Algebra 29 (2001), 2589-2595. Zbl 0989.16015, MR 1845131, 10.1081/AGB-100002409 |
Reference: | [8] Hirano, Y., Tominaga, H.: Rings in which every element is a sum of two idempotents.Bull. Aust. Math. Soc. 37 (1988), 161-164. Zbl 0688.16015, MR 0930784, 10.1017/S000497270002668X |
Reference: | [9] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element.Math. J. Okayama Univ. 30 (1988), 33-40. Zbl 0665.16016, MR 0976729, 10.18926/mjou/33546 |
Reference: | [10] Koşan, M. T., Lee, T.-K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?.Linear Algebra Appl. 450 (2014), 7-12. Zbl 1303.15016, MR 3192466, 10.1016/j.laa.2014.02.047 |
Reference: | [11] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings.J. Pure Appl. Algebra 220 (2016), 633-646. Zbl 1335.16026, MR 3399382, 10.1016/j.jpaa.2015.07.009 |
Reference: | [12] Tominaga, H., Yaqub, A.: On generalized $n$-like rings and related rings.Math. J. Okayama Univ. 23 (1981), 199-202. Zbl 0477.16018, MR 0638143 |
Reference: | [13] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents.Can. Math. Bull. 59 (2016), 661-672. Zbl 1373.16067, MR 3563747, 10.4153/CMB-2016-009-0 |
Reference: | [14] Yu, H.-P.: On quasi-duo rings.Glasg. Math. J. 37 (1995), 21-31. Zbl 0819.16001, MR 1316960, 10.1017/S0017089500030342 |
. |
Fulltext not available (moving wall 24 months)