Previous |  Up |  Next

Article

Title: On feebly nil-clean rings (English)
Author: Sheibani Abdolyousefi, Marjan
Author: Pouyan, Neda
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 87-94
Summary lang: English
.
Category: math
.
Summary: A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices. (English)
Keyword: orthogonal idempotent matrix
Keyword: nilpotent matrix
Keyword: matrix ring
Keyword: feebly nil-clean ring
MSC: 15A23
MSC: 15B33
MSC: 16U99
DOI: 10.21136/CMJ.2023.0215-22
.
Date available: 2024-03-13T10:04:05Z
Last updated: 2024-03-18
Stable URL: http://hdl.handle.net/10338.dmlcz/152269
.
Reference: [1] Abyzov, A. N., Mukhametgaliev, I. I.: On some matrix analogs of the little Fermat theorem.Math. Notes 101 (2017), 187-192. Zbl 1365.16024, MR 3608014, 10.1134/S0001434617010229
Reference: [2] Arora, N., Kundu, S.: Commutative feebly clean rings.J. Algebra Appl. 16 (2017), Article ID 1750128, 14 pages. Zbl 1368.13006, MR 3660411, 10.1142/S0219498817501286
Reference: [3] Breaz, S., Călugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings.Linear Algebra Appl. 439 (2013), 3115-3119. Zbl 1355.16023, MR 3116417, 10.1016/j.laa.2013.08.027
Reference: [4] Chen, H.: Rings Related Stable Range Conditions.Series in Algebra 11. World Scientific, Hackensack (2011). Zbl 1245.16002, MR 2752904, 10.1142/8006
Reference: [5] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings.J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. Zbl 1382.16035, MR 3661645, 10.1142/S021949881750178X
Reference: [6] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [7] Han, J., Nicholson, W. K.: Extensions of clean rings.Commun. Algebra 29 (2001), 2589-2595. Zbl 0989.16015, MR 1845131, 10.1081/AGB-100002409
Reference: [8] Hirano, Y., Tominaga, H.: Rings in which every element is a sum of two idempotents.Bull. Aust. Math. Soc. 37 (1988), 161-164. Zbl 0688.16015, MR 0930784, 10.1017/S000497270002668X
Reference: [9] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element.Math. J. Okayama Univ. 30 (1988), 33-40. Zbl 0665.16016, MR 0976729, 10.18926/mjou/33546
Reference: [10] Koşan, M. T., Lee, T.-K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?.Linear Algebra Appl. 450 (2014), 7-12. Zbl 1303.15016, MR 3192466, 10.1016/j.laa.2014.02.047
Reference: [11] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings.J. Pure Appl. Algebra 220 (2016), 633-646. Zbl 1335.16026, MR 3399382, 10.1016/j.jpaa.2015.07.009
Reference: [12] Tominaga, H., Yaqub, A.: On generalized $n$-like rings and related rings.Math. J. Okayama Univ. 23 (1981), 199-202. Zbl 0477.16018, MR 0638143
Reference: [13] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents.Can. Math. Bull. 59 (2016), 661-672. Zbl 1373.16067, MR 3563747, 10.4153/CMB-2016-009-0
Reference: [14] Yu, H.-P.: On quasi-duo rings.Glasg. Math. J. 37 (1995), 21-31. Zbl 0819.16001, MR 1316960, 10.1017/S0017089500030342
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo