Previous |  Up |  Next

Article

Title: Recurrence and mixing recurrence of multiplication operators (English)
Author: Amouch, Mohamed
Author: Lakrimi, Hamza
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 1
Year: 2024
Pages: 1-11
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Banach space, $\mathcal {B}(X)$ the algebra of bounded linear operators on $X$ and $(J, \|{\cdot }\|_{J})$ an admissible Banach ideal of $\mathcal {B}(X)$. For $T\in \mathcal {B}(X)$, let $L_{J, T}$ and $R_{J, T}\in \mathcal {B}(J)$ denote the left and right multiplication defined by $L_{J, T}(A)=TA$ and $R_{J, T}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal {B}(X)$, and their elementary operators $L_{J, T}$ and $R_{J, T}$. In particular, we give necessary and sufficient conditions for $L_{J, T}$ and $R_{J, T}$ to be sequentially recurrent. Furthermore, we prove that $L_{J, T}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_{J, T}$ is mixing recurrent if and only if $T$ is mixing recurrent. (English)
Keyword: hypercyclicity
Keyword: recurrent operator
Keyword: left multiplication operator
Keyword: right multiplication operator
Keyword: tensor product
Keyword: Banach ideal of operators
MSC: 37B20
MSC: 47A16
MSC: 47B47
DOI: 10.21136/MB.2023.0047-22
.
Date available: 2024-03-13T10:15:25Z
Last updated: 2024-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152286
.
Reference: [1] Akin, E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions.Plenum Press, New York (1997). Zbl 0919.54033, MR 1467479, 10.1007/978-1-4757-2668-8
Reference: [2] Amouch, M., Lakrimi, H.: Supercyclicity of multiplication on Banach ideal of operators.Bol. Soc. Parana. Mat. (3) 40 (2022), 11 pages. MR 4417157, 10.5269/bspm.52067
Reference: [3] Bayart, F., Matheron, É.: Dynamics of Linear Operators.Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). Zbl 1187.47001, MR 2533318, 10.1017/cbo9780511581113
Reference: [4] Birkhoff, G. D.: Surface transformations and their dynamical applications.Acta Math. 43 (1922), 1-119 \99999JFM99999 47.0985.03. MR 1555175, 10.1007/BF02401754
Reference: [5] Bonet, J., Martínez-Giménez, F., Peris, A.: Universal and chaotic multipliers on spaces of operators.J. Math. Anal. Appl. 297 (2004), 599-611. Zbl 1062.47011, MR 2088683, 10.1016/j.jmaa.2004.03.073
Reference: [6] Bonilla, A., Grosse-Erdmann, K. G., López-Martínez, A., Peris, A.: Frequently recurrent operators.Available at https://arxiv.org/abs/2006.11428v1 (2020), 31 pages. MR 4489276
Reference: [7] Chan, K. C.: Hypercyclicity of the operator algebra for a separable Hilbert space.J. Oper. Theory 42 (1999), 231-244. Zbl 0997.47058, MR 1716973
Reference: [8] K. C. Chan, R. D. Taylor, Jr.: Hypercyclic subspaces of a Banach space.Integral Equations Oper. Theory 41 (2001), 381-388. Zbl 0995.46014, MR 1857797, 10.1007/BF01202099
Reference: [9] Costakis, G., Manoussos, A., Parissis, I.: Recurrent linear operators.Complex Anal. Oper. Theory 8 (2014), 1601-1643. Zbl 1325.47019, MR 3275437, 10.1007/s11785-013-0348-9
Reference: [10] Costakis, G., Parissis, I.: Szemerédi's theorem, frequent hypercyclicity and multiple recurrence.Math. Scand. 110 (2012), 251-272. Zbl 1246.47003, MR 2943720, 10.7146/math.scand.a-15207
Reference: [11] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.M. B. Porter Lectures. Princeton University Press, Princeton (1981). Zbl 0459.28023, MR 0603625, 10.1515/9781400855162
Reference: [12] Galán, V. J., Martínez-Giménez, F., Oprocha, P., Peris, A.: Product recurrence for weighted backward shifts.Appl. Math. Inf. Sci. 9 (2015), 2361-2365. MR 3358706
Reference: [13] Gilmore, C.: Dynamics of generalised derivations and elementary operators.Complex Anal. Oper. Theory 13 (2019), 257-274. Zbl 7032879, MR 3905592, 10.1007/s11785-018-0774-9
Reference: [14] Gilmore, C., Saksman, E., Tylli, H.-O.: Hypercyclicity properties of commutator maps.Integral Equations Oper. Theory 87 (2017), 139-155. Zbl 6715520, MR 3609241, 10.1007/s00020-016-2332-z
Reference: [15] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18. AMS, Providence (1969). Zbl 0181.13504, MR 0246142, 10.1090/mmono/018
Reference: [16] Gottschalk, W. H., Hedlund, G. H.: Topological Dynamics.Colloquium Publications of the American Mathematical Society 36. AMS, Providence (1955). Zbl 0067.15204, MR 0074810, 10.1090/coll/036
Reference: [17] Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem.J. Oper. Theory 54 (2005), 147-168. Zbl 1104.47010, MR 2168865
Reference: [18] Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators.Bull. Am. Math. Soc. 36 (1999), 345-381. Zbl 0933.47003, MR 1685272, 10.1090/S0273-0979-99-00788-0
Reference: [19] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos.Universitext. Springer, Berlin (2011). Zbl 1246.47004, MR 2919812, 10.1007/978-1-4471-2170-1
Reference: [20] Gupta, M., Mundayadan, A.: Supercyclicity in spaces of operators.Result. Math. 70 (2016), 95-107. Zbl 1384.47003, MR 3534995, 10.1007/s00025-015-0463-1
Reference: [21] Martínez-Giménez, F., Peris, A.: Universality and chaos for tensor products of operators.J. Approximation Theory 124 (2003), 7-24. Zbl 1062.47014, MR 2010778, 10.1016/S0021-9045(03)00118-7
Reference: [22] Petersson, H.: Hypercyclic conjugate operators.Integral Equations Oper. Theory 57 (2007), 413-423. Zbl 1141.47005, MR 2307819, 10.1007/s00020-006-1459-8
Reference: [23] Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique.Acta Math. 13 (1890), 1-270 French \99999JFM99999 22.0907.01.
Reference: [24] Rolewicz, S.: On orbits of elements.Stud. Math. 32 (1969), 17-22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22
Reference: [25] Shapiro, J. H.: Notes on the dynamics of linear operators.Available at \def{ }\brokenlink{https://users.math.msu.edu/users/shapiro/Pubvit/Downloads/LinDynamics/{LynDynamics.html}}.
Reference: [26] Yin, Z., Wei, Y.: Recurrence and topological entropy of translation operators.J. Math. Anal. Appl. 460 (2018), 203-215. Zbl 6824859, MR 3739900, 10.1016/j.jmaa.2017.11.046
Reference: [27] Yousefi, B., Rezaei, H.: Hypercyclicity on the algebra of Hilbert-Schmidt operators.Result. Math. 46 (2004), 174-180. Zbl 1080.47013, MR 2093472, 10.1007/BF03322879
Reference: [28] Yousefi, B., Rezaei, H.: On the supercyclicity and hypercyclicity of the operator algebra.Acta. Math. Sin., Engl. Ser. 24 (2008), 1221-1232. Zbl 1154.47004, MR 2420891, 10.1007/s10114-007-6601-2
.

Files

Files Size Format View
MathBohem_149-2024-1_1.pdf 236.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo