Title:
|
Entire function sharing two polynomials with its $k$th derivative (English) |
Author:
|
Majumder, Sujoy |
Author:
|
Sarkar, Nabadwip |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
1 |
Year:
|
2024 |
Pages:
|
87-103 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the uniqueness problem of entire functions that share two polynomials with their $k$th derivatives and obtain some results which improve and generalize the recent result due to Lü and Yi (2011). Also, we exhibit some examples to show that the conditions of our results are the best possible. (English) |
Keyword:
|
meromorphic function |
Keyword:
|
derivative |
Keyword:
|
Nevanlinna theory |
Keyword:
|
uniqueness |
MSC:
|
30D35 |
MSC:
|
30D45 |
DOI:
|
10.21136/MB.2023.0017-22 |
. |
Date available:
|
2024-03-13T10:21:01Z |
Last updated:
|
2024-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152295 |
. |
Reference:
|
[1] Brück, R.: On entire functions which share one value CM with their first derivative.Result. Math. 30 (1996), 21-24. Zbl 0861.30032, MR 1402421, 10.1007/BF03322176 |
Reference:
|
[2] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038 |
Reference:
|
[3] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions.Complex Variables, Theory Appl. 46 (2001), 241-253. Zbl 1025.30027, MR 1869738, 10.1080/17476930108815411 |
Reference:
|
[4] Laine, I.: Nevanlinna Theory and Complex Differential Equations.de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). Zbl 0784.30002, MR 1207139, 10.1515/9783110863147 |
Reference:
|
[5] Li, J., Yi, H.: Normal families and uniqueness of entire functions and their derivatives.Arch. Math. 87 (2006), 52-59. Zbl 1104.30019, MR 2246406, 10.1007/s00013-005-1619-0 |
Reference:
|
[6] Lü, F., Xu, J., Chen, A.: Entire functions sharing polynomials with their first derivatives.Arch. Math. 92 (2009), 593-601. Zbl 1179.30027, MR 2516165, 10.1007/s00013-009-3075-8 |
Reference:
|
[7] Lü, F., Yi, H.: The Brück conjecture and entire functions sharing polynomials with their $k$-th derivatives.J. Korean Math. Soc. 48 (2011), 499-512. Zbl 1232.30024, MR 2815888, 10.4134/JKMS.2011.48.3.499 |
Reference:
|
[8] Mues, E., Steinmetz, N.: Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen.Manuscr. Math. 29 (1979), 195-206 German. Zbl 0416.30028, MR 0545041, 10.1007/BF01303627 |
Reference:
|
[9] Rubel, L. A., Yang, C.-C.: Values shared by an entire function and its derivative.Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 101-103. Zbl 0362.30026, MR 0460640, 10.1007/BFb0096830 |
Reference:
|
[10] Schiff, J. L.: Normal Families.Universitext. Springer, New York (1993). Zbl 0770.30002, MR 1211641, 10.1007/978-1-4612-0907-2 |
Reference:
|
[11] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions.Mathematics and Its Applications (Dordrecht) 557. Kluwer Academic, Dordrecht (2003). Zbl 1070.30011, MR 2105668, 10.1007/978-94-017-3626-8 |
Reference:
|
[12] Yang, L.-Z., Zhang, J.-L.: Non-existence of meromorphic solutions of Fermat type functional equation.Aequationes Math. 76 (2008), 140-150. Zbl 1161.30022, MR 2443466, 10.1007/s00010-007-2913-7 |
Reference:
|
[13] Zhang, J.-L., Yang, L.-Z.: A power of an entire function sharing one value with its derivative.Comput. Math. Appl. 60 (2010), 2153-2160. Zbl 1205.30033, MR 2719737, 10.1016/j.camwa.2010.08.001 |
. |