Previous |  Up |  Next

Article

Title: Quasigroup covers of division groupoids (English)
Author: Ježek, Jaroslav J.
Author: Kepka, Tomáš J.
Author: Němec, Petr C.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 3
Year: 2023
Pages: 265-278
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a division groupoid that is not a quasigroup. For each regular cardinal $\alpha>|G|$ we construct a quasigroup $Q$ on $G\times\alpha$ that is a quasigroup cover of $G$ (i.e., $G$ is a homomorphic image of $Q$ and $G$ is not an image of any quasigroup that is a proper factor of $Q$). We also show how to easily obtain quasigroup covers from free quasigroups. (English)
Keyword: groupoid
Keyword: division
Keyword: quasigroup
Keyword: cover
MSC: 20N05
idZBL: Zbl 07830508
idMR: MR4717501
DOI: 10.14712/1213-7243.2024.002
.
Date available: 2024-03-18T10:34:32Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152297
.
Reference: [1] Albert A. A.: Qusigroups. I.Trans. Amer. Math. Soc. 54 (1943), 507–519. MR 0009962, 10.1090/S0002-9947-1943-0009962-7
Reference: [2] Baer R.: The homomorphism theorems for loops.Amer. J. Math. 67 (1945), 458–460. Zbl 0063.00166, MR 0012302, 10.2307/2371960
Reference: [3] Bates G. E., Kiokemeister F.: A note on homomorphic mapping of quasigroups into multiplicative systems.Bull. Amer. Math. Soc. 54 (1948), 1180–1185. MR 0027768, 10.1090/S0002-9904-1948-09146-7
Reference: [4] Bruck R. H.: Simple quasigroups.Bull. Amer. Math. Soc. 50 (1944), 769–781. MR 0011311, 10.1090/S0002-9904-1944-08236-0
Reference: [5] Bruck R. H.: Some results in the theory of linear non-associative algebras.Trans. Amer. Math. Soc. 56 (1944), 141–199. MR 0011083, 10.1090/S0002-9947-1944-0011083-5
Reference: [6] Bruck R. H.: A Survey of Binary Systems.Gruppentheorie, Ergebnisse der Mathematik und ihre Grenzgebiete, (N.F.), 20, Springer, Berlin, 1958. Zbl 0141.01401, MR 0093552
Reference: [7] Evans T.: On multiplicative systems defined by generators and relations. I. Normal form theorems.Proc. Cambridge Philos. Soc. 47 (1951), 637–649. MR 0043764
Reference: [8] Garrison G. N.: Quasi-groups.Ann. of Math. (2) 41 (1940), 474–487. MR 0002150
Reference: [9] Hausmann B. A., Ore O.: Theory of quasi-groups.Amer. J. Math. 59 (1937), no. 4, 983–1004. MR 1507296, 10.2307/2371362
Reference: [10] Kepka T., Němec P.: In memory of Jaroslav Ježek.Acta Univ. Carolin. Math. Phys. 53 (2012), no. 2, 3–4. MR 3099636
Reference: [11] Kiokemeister F.: A theory of normality for quasigroups.Amer. J. Math. 70 (1948), 99–106. MR 0023252, 10.2307/2371934
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo