Previous |  Up |  Next

Article

Title: Complex interpolation of function spaces with general weights (English)
Author: Drihem, Douadi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 3
Year: 2023
Pages: 289-320
Summary lang: English
.
Category: math
.
Summary: We present the complex interpolation of Besov and Triebel--Lizorkin spaces with generalized smoothness. In some particular cases these function spaces are just weighted Besov and Triebel--Lizorkin spaces. As a corollary of our results, we obtain the complex interpolation between the weighted Triebel--Lizorkin spaces $\dot{F}_{p_{0},q_{0}}^{s_{0}} (\omega _{0})$ and $\dot{F}_{\infty ,q_{1}}^{s_{1}}(\omega _{1}) $ with suitable assumptions on the parameters $ s_{0},s_{1},p_{0}, q_{0}$ and $q_{1}$, and the pair of weights $(\omega _{0},\omega _{1})$. (English)
Keyword: Besov space
Keyword: Triebel--Lizorkin space
Keyword: complex interpolation
Keyword: Muckenhoupt class
MSC: 26B35
MSC: 42B25
MSC: 42B35
MSC: 46E35
idZBL: Zbl 07830510
idMR: MR4717503
DOI: 10.14712/1213-7243.2024.003
.
Date available: 2024-03-18T10:40:59Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152300
.
Reference: [1] Andersen K. F., John R. T.: Weighted inequalities for vector-valued maximal functions and singular integrals.Studia Math. 69 (1980/81), no. 1, 19–31. MR 0604351
Reference: [2] Bergh J., Löfström J.: Interpolation Spaces. An Introduction.Grundlehren der Mathematischen Wissenschaften, 223, Springer, Berlin, 1976. MR 0482275, 10.1007/978-3-642-66451-9
Reference: [3] Besov O. V.: Equivalent normings of spaces of functions of variable smoothness.Funkts. Prostran., Priblizh., Differ. Uravn., Tr. Mat. Inst. Steklova 243 (2003), 87–95 (Russian); translation in Proc. Steklov Inst. Math. 243 (2003), no. 4, 80–88. MR 2049464
Reference: [4] Besov O. V.: Interpolation, embedding, and extension of spaces of functions of variable smoothness.Issled. po Teor. Funkts. i Differ. Uravn., Tr. Mat. Inst. Steklova 248 (2005), 52–63 (Russian); translation in Proc. Steklov Inst. Math. 248 (2005), no. 1, 47–58. MR 2165915
Reference: [5] Bownik M.: Anisotropic Triebel–Lizorkin spaces with doubling measures.J. Geom. Anal. 17 (2007), no. 3, 387–424. MR 2358763, 10.1007/BF02922089
Reference: [6] Bownik M.: Duality and interpolation of anisotropic Triebel–Lizorkin spaces.Math. Z. 259 (2008), no. 1, 131–169. MR 2375620, 10.1007/s00209-007-0216-2
Reference: [7] Bui H. Q.: Weighted Besov and Triebel spaces: interpolation by the real method.Hiroshima Math. J. 12 (1982), no. 3, 581–605. MR 0676560
Reference: [8] Calderón A. P.: Intermediate spaces and interpolation, the complex method.Studia Math. 24 (1964), 113–190. MR 0167830, 10.4064/sm-24-2-113-190
Reference: [9] Cobos F., Fernandez D. L.: Hardy–Sobolev spaces and Besov spaces with a function parameter.Function Spaces and Applications, Lund, 1986, Lecture Notes in Math., 1302, Springer, Berlin, 1988, pages 158–170. MR 0942266, 10.1007/BFb0078872
Reference: [10] Domínguez O., Tikhonov S.: Function spaces of logarithmic smoothness: embeddings and characterizations.Mem. Amer. Math. Soc. 282 (2023), no. 1393, vii+166 pages. MR 4539365
Reference: [11] Drihem D.: Besov spaces with general weights.J. Math. Study. 56 (2023), no. 1, 18–92. MR 4560234, 10.4208/jms.v56n1.23.02
Reference: [12] Drihem D.: Triebel–Lizorkin spaces with general weights.Adv. Oper. Theory 8 (2023) no. 1, Paper No. 5, 69 pages. MR 4510628, 10.1007/s43036-022-00230-0
Reference: [13] Drihem D.: Duality of Triebel–Lizorkin spaces of general weights.available at ArXiv: 2402.04635v1 [math.FA] (2024), 22 pages. MR 4510628
Reference: [14] Edmunds D., Triebel H.: Spectral theory for isotropic fractal drums.C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 11, 1269–1274. MR 1649135, 10.1016/S0764-4442(98)80177-8
Reference: [15] Edmunds D., Triebel H.: Eigenfrequencies of isotropic fractal drums.The Maz'ya anniversary collection, 2, Rostock, 1998, Birkhäuser Verlag, Basel, Oper. Theory Adv. Appl. 110 (1999), pages 81–102. MR 1747890
Reference: [16] Farkas W., Leopold H.-G.: Characterisations of function spaces of generalised smoothness.Ann. Mat. Pura Appl. (4) 185 (2006), no. 1, 1–62. MR 2179581, 10.1007/s10231-004-0110-z
Reference: [17] Fefferman C., Stein E. M.: Some maximal inequalities.Amer. J. Math. 93 (1971), 107–115. MR 0284802, 10.2307/2373450
Reference: [18] Frazier M., Jawerth B.: Decomposition of Besov spaces.Indiana Univ. Math. J. 34 (1985), no. 4, 777–799. MR 0808825, 10.1512/iumj.1985.34.34041
Reference: [19] Frazier M., Jawerth B.: A discrete transform and decomposition of distribution spaces.J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, 10.1016/0022-1236(90)90137-A
Reference: [20] Frazier M., Jawerth B., Weiss G.: Littlewood–Paley Theory and the Study of Function Spaces.CBMS Regional Conference Series in Mathematics, 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC., American Mathematical Society, Providence, 1991. MR 1107300
Reference: [21] García-Cuerva J., Rubio de Francia J. L.: Weighted Norm Inequalities and Related Topics.North-Holland Mathematics Studies, 116, Notas de Matemática, 104, North-Holland Publishing Co., Amsterdam, 1985. MR 0807149
Reference: [22] Goldman M. L.: Description of traces for certain function spaces.Trudy Mat. Inst. Steklov. 150 (1979), 99–127, 322 (Russian). MR 0544006
Reference: [23] Goldman M. L.: The method of coverings for describing general spaces of Besov type.Trudy Mat. Inst. Steklov. 156 (1980), 47–81, 262 (Russian). MR 0622227
Reference: [24] Grafakos L.: Classical Fourier Analysis.Graduate Texts in Mathematics, 249, Springer, New York, 2014. Zbl 1336.00075, MR 3243734
Reference: [25] Kaljabin G. A.: Descriptions of functions from classes of Besov–Lizorkin–Triebel type.Trudy Mat. Inst. Steklov. 156 (1980), 82–109, 262 (Russian). MR 0622228
Reference: [26] Kaljabin G. A., Lizorkin P. I.: Spaces of functions of generalized smoothness.Math. Nachr. 133 (1987), 7–32. MR 0912417, 10.1002/mana.19871330102
Reference: [27] Kalton N., Mayboroda S., Mitrea M.: Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations.Interpolation Theory and Applications, Amer. Math. Soc., Providence, Contemp. Math. 445 (2007), 121–177. MR 2381891, 10.1090/conm/445/08598
Reference: [28] Kempka H., Vybíral J.: Spaces of variable smoothness and integrability: characterizations by local means and ball means of differences.J. Fourier Anal. Appl. 18 (2012), no. 4, 852–891. MR 2984372, 10.1007/s00041-012-9224-7
Reference: [29] Kokilashvili V. M.: Maximum inequalities and multipliers in weighted Lizorkin–Triebel spaces.Dokl. Akad. Nauk SSSR 239 (1978), no. 1, 42–45 (Russian). MR 0470592
Reference: [30] Moura S. D.: Function Spaces of Generalised Smoothness.Dissertationes Math. (Rozprawy Mat.), 398, 2001, 88 pages. MR 1876765
Reference: [31] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [32] Rychkov V. S.: Littlewood–Paley theory and function spaces with $A_{p}^{\mathrm{loc}}$-weights.Math. Nachr. 224 (2001), no. 1, 145–180. MR 1821243, 10.1002/1522-2616(200104)224:1<145::AID-MANA145>3.0.CO;2-2
Reference: [33] Schott T.: Function spaces with exponential weights. II..Math. Nachr. 196 (1998), 231–250. MR 1658014, 10.1002/mana.19981960110
Reference: [34] Sickel W., Skrzypczak L., Vybíral J.: Complex interpolation of weighted Besov and Lizorkin–Triebel spaces.Acta. Math. Sci. (Engl. Ser.) 30 (2014), no. 8, 1297–1323. MR 3229143
Reference: [35] Tang C.: A note on weighted Besov-type and Triebel–Lizorkin-type spaces.J. Funct. Spaces Appl. 2013 (2013), Article ID 865835, 12 pages. MR 3036711
Reference: [36] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators.Deutscher Verlag der Wissenschaften, Berlin, 1978. Zbl 0830.46028, MR 0500580
Reference: [37] Triebel H.: Theory of Function Spaces.Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. Zbl 1104.46001, MR 0781540
Reference: [38] Triebel H.: Theory of Function Spaces. II..Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, 1992. MR 1163193
Reference: [39] Tyulenev A. I: Description of traces of functions in the Sobolev space with a Muckenhoupt weight.Tr. Mat. Inst. Steklova 284 (2014), 288–303; translation in Proc. Steklov Inst. Math. 284 (2014), no. 1, 280–295. MR 3479981, 10.1134/S0081543814010209
Reference: [40] Tyulenev A. I.: Some new function spaces of variable smoothness.Mat. Sb. 206 (2015), no. 6, 85–128; translation in Sb. Math. 206 (2015), no. 5–6, 849–891. MR 3438581, 10.1070/SM2015v206n06ABEH004481
Reference: [41] Tyulenev A. I.: Besov-type spaces of variable smoothness on rough domains.Nonlinear Anal. 145 (2016), 176–198. MR 3547680
Reference: [42] Tyulenev A. I.: On various approaches to Besov-type spaces of variable smoothness.J. Math. Anal. Appl. 451 (2017), no. 1, 371–392. MR 3619242, 10.1016/j.jmaa.2017.02.006
Reference: [43] Wojciechowska A.: Multidimensional Wavelet Bases in Besov and Lizorkin–Triebel Spaces.PhD. Thesis, Adam Mickiewicz University Poznań, Poznań, 2012.
Reference: [44] Yang D., Yuan W., Zhuo C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces.Anal. Appl. (Singap). 11 (2013), no. 5, 1350021, 45 pages. MR 3104106, 10.1142/S0219530513500218
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo