Previous |  Up |  Next

Article

Title: Aposyndesis in $\mathbb{N}$ (English)
Author: Alberto-Domínguez, José del Carmen
Author: Acosta, Gerardo
Author: Madriz-Mendoza, Maira
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 3
Year: 2023
Pages: 359-371
Summary lang: English
.
Category: math
.
Summary: We consider the Golomb and the Kirch topologies in the set of natural numbers. Among other results, we show that while with the Kirch topology every arithmetic progression is aposyndetic, in the Golomb topology only for those arithmetic progressions $P(a,b)$ with the property that every prime number that divides $a$ also divides $b$, it follows that being connected, being Brown, being totally Brown, and being aposyndetic are all equivalent. This characterizes the arithmetic progressions which are aposyndetic in the Golomb space. (English)
Keyword: aposyndesis
Keyword: arithmetic progression
Keyword: Golomb topology
Keyword: Kirch topology
Keyword: totally Brown space
Keyword: totally separated space
MSC: 11A41
MSC: 11B05
MSC: 11B25
MSC: 54A05
MSC: 54D05
MSC: 54D10
idZBL: Zbl 07830514
idMR: MR4717507
DOI: 10.14712/1213-7243.2023.029
.
Date available: 2024-03-18T10:45:13Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152304
.
Reference: [1] Alberto-Domínguez J. D. C., Acosta G., Delgadillo-Piñón G.: Totally Brown subsets of the Golomb space and the Kirch space.Comment. Math. Univ. Carolin. 63 (2022), no. 2, 189–219. MR 4506132
Reference: [2] Alberto-Domínguez J. D. C., Acosta G., Madriz-Mendoza M.: The common division topology on $\mathbb{N}$.Comment. Math. Univ. Carolin. 63 (2022), no. 3, 329–349. MR 4542793
Reference: [3] Banakh T., Mioduszewski J., Turek S.: On continuous self-maps and homeomorphisms of the Golomb space.Comment. Math. Univ. Carolin. 59 (2018), no. 4, 423–442. MR 3914710
Reference: [4] Engelking R.: General Topology.Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Golomb S. W.: A connected topology for the integers.Amer. Math. Monthly 66 (1959), 663–665. MR 0107622, 10.1080/00029890.1959.11989385
Reference: [6] Golomb S. W.: Arithmetica topologica.General Topology and Its Relations to Modern Analysis and Algebra, Proc. Sympos., Prague, 1961, Academic Press, New York, 1961, pages 179–186 (Italian). MR 0154249
Reference: [7] Kirch A. M.: A countable, connected, locally connected Hausdorff space.Amer. Math. Monthly 76 (1969), 169–171. MR 0239563, 10.1080/00029890.1969.12000163
Reference: [8] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology.Dover Publications, Mineola, New York, 1995. Zbl 0386.54001, MR 1382863
Reference: [9] Szczuka P.: The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies.Demonstratio Math. 43 (2010), no. 4, 899–909. MR 2761648, 10.1515/dema-2010-0416
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo