Previous |  Up |  Next

Article

Title: On certain $GL(6)$ form and its Rankin-Selberg convolution (English)
Author: Kaur, Amrinder
Author: Sankaranarayanan, Ayyadurai
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 415-427
Summary lang: English
.
Category: math
.
Summary: We consider $L_G(s)$ to be the $L$-function attached to a particular automorphic form $G$ on $GL(6)$. We establish an upper bound for the mean square estimate on the critical line of Rankin-Selberg $L$-function $L_{G \times G}(s)$. As an application of this result, we give an asymptotic formula for the discrete sum of coefficients of $L_{G \times G}(s)$. (English)
Keyword: Maass form
Keyword: automorphic form
Keyword: Rankin-Selberg convolution
MSC: 11F12
MSC: 11F30
MSC: 11N75
DOI: 10.21136/CMJ.2024.0355-23
.
Date available: 2024-07-10T14:51:32Z
Last updated: 2024-07-15
Stable URL: http://hdl.handle.net/10338.dmlcz/152449
.
Reference: [1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function.J. Am. Math. Soc. 30 (2017), 205-224. Zbl 1352.11065, MR 3556291, 10.1090/jams/860
Reference: [2] Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3).Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. Zbl 0406.10022, MR 0533066, 10.24033/asens.1355
Reference: [3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n,\Bbb{R})$.Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). Zbl 1108.11039, MR 2254662, 10.1017/CBO9780511542923
Reference: [4] Heath-Brown, D. R.: The twelfth power moment of the Riemann-function.Q. J. Math. 29 (1978), 443-462. Zbl 0394.10020, MR 0517737, 10.1093/qmath/29.4.443
Reference: [5] Kim, H. H.: Functoriality for the exterior square of GL$_4$ and the symmetric fourth of GL$_2$.J. Am. Math. Soc. 16 (2003), 139-183. Zbl 1018.11024, MR 1937203, 10.1090/S0894-0347-02-00410-1
Reference: [6] Kim, H. H., Shahidi, F.: Functorial products for GL$_2 \times \rm {GL}_3$ and the symmetric cube for GL$_2$.Ann. Math. (2) 155 (2002), 837-893. Zbl 1040.11036, MR 1923967, 10.2307/3062134
Reference: [7] Langlands, R. P.: Problems in the theory of automorphic forms.Lectures in Modern Analysis and Applications III Lecture Notes in Mathematics 170. Springer, Berlin (1970), 18-61. Zbl 0225.14022, MR 0302614, 10.1007/BFb0079065
Reference: [8] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms.Q. J. Math. 62 (2011), 687-716. Zbl 1269.11044, MR 2825478, 10.1093/qmath/haq012
Reference: [9] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL(3) $L$-functions.Int. Math. Res. Not. 153 (2022), 11453-11470. Zbl 07711446, MR 4609788, 10.1093/imrn/rnac153
Reference: [10] Meurman, T.: On the order of the Maass $L$-function on the critical line.Number Theory. Volume 1 Colloquia Mathematica Societatis János Bolyai 51. North-Holland, Amsterdam (1990), 325-354. Zbl 0724.11029, MR 1058223
Reference: [11] Nelson, P. D.: Bounds for standard $L$-functions.Available at {\def\let \relax \brokenlink{https://arxiv.org/abs/2109.15230}}\kern0pt (2021), 237 pages. 10.48550/arXiv.2109.15230
Reference: [12] Perelli, A.: General $L$-functions.Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 287-306. Zbl 0485.10030, MR 0663975, 10.1007/BF01761499
Reference: [13] Rankin, R. A.: Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions I.Proc. Camb. Philos. Soc. 35 (1939), 351-356. Zbl 0021.39201, MR 0000411, 10.1017/S0305004100021095
Reference: [14] Selberg, A.: Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist.Arch. Math. Naturvid. B 43 (1940), 47-50 German. Zbl 0023.22201, MR 0002626
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo