Previous |  Up |  Next

Article

Title: Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents (English)
Author: Wang, Hongbin
Author: Niu, Chenchen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 493-514
Summary lang: English
.
Category: math
.
Summary: We introduce a type of $n$-dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained. (English)
Keyword: bilinear fractional Hardy operator
Keyword: rough kernel
Keyword: central Morrey space
Keyword: variable exponent
MSC: 42B20
MSC: 42B35
DOI: 10.21136/CMJ.2024.0431-23
.
Date available: 2024-07-10T14:54:24Z
Last updated: 2024-07-15
Stable URL: http://hdl.handle.net/10338.dmlcz/152454
.
Reference: [1] Alvarez, J., Lakey, J., Guzmán-Partida, M.: Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures.Collect. Math. 51 (2000), 1-47. Zbl 0948.42013, MR 1757848
Reference: [2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces.Rev. Mat. Iberoam. 23 (2007), 743-770. Zbl 1213.42063, MR 2414490, 10.4171/RMI/511
Reference: [3] Christ, M., Grafakos, L.: Best constants for two nonconvolution inequalities.Proc. Am. Math. Soc. 123 (1995), 1687-1693. Zbl 0830.42009, MR 1239796, 10.1090/S0002-9939-1995-1239796-6
Reference: [4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces.Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. Zbl 1037.42023, MR 1976842
Reference: [5] Cruz-Uribe, D., Wang, D.: Variable Hardy spaces.Indiana Univ. Math. J. 63 (2014), 447-493. Zbl 1311.42053, MR 3233216, 10.1512/iumj.2014.63.5232
Reference: [6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [7] Fu, Z. W., Gong, S. L., Lu, S. Z., Yuan, W.: Weighted multilinear Hardy operators and commutators.Forum Math. 27 (2015), 2825-2851. Zbl 1331.42016, MR 3393380, 10.1515/forum-2013-0064
Reference: [8] Fu, Z., Lin, Y.: $\lambda$-central BMO estimates for commutators of higher dimensional fractional Hardy operators.Acta Math. Sin., Chin. Ser. 53 (2010), 925-932 Chinese. Zbl 1240.42040, MR 2722928, 10.12386/A2010sxxb0103
Reference: [9] Fu, Z., Liu, Z., Lu, S., Wang, H.: Characterization for commutators of $n$-dimensional fractional Hardy operators.Sci. China, Ser. A 50 (2007), 1418-1426. Zbl 1131.42012, MR 2390459, 10.1007/s11425-007-0094-4
Reference: [10] Fu, Z., Lu, S., Shi, S.: Two characterizations of central BMO space via the commutators of Hardy operators.Forum Math. 33 (2021), 505-529. Zbl 1491.42035, MR 4223073, 10.1515/forum-2020-0243
Reference: [11] Fu, Z., Lu, S., Wang, H., Wang, L.: Singular integral operators with rough kernels on central Morrey spaces with variable exponent.Ann. Acad. Sci. Fenn., Math. 44 (2019), 505-522. Zbl 1412.42059, MR 3919152, 10.5186/aasfm.2019.4431
Reference: [12] Fu, Z., Lu, S., Zhao, F.: Commutators of $n$-dimensional rough Hardy operators.Sci. China, Math. 54 (2011), 95-104. Zbl 1226.47050, MR 2764788, 10.1007/s11425-010-4110-8
Reference: [13] Hardy, G. H.: Note on a theorem of Hilbert.Math. Z. 6 (1920), 314-317 \99999JFM99999 47.0207.01. MR 1544414, 10.1007/BF01199965
Reference: [14] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033
Reference: [15] Ho, K.-P.: Hardy's inequality on Hardy-Morrey spaces with variable exponents.Mediterr. J. Math. 14 (2017), Article ID 79, 19 pages. Zbl 1367.26034, MR 3620157, 10.1007/s00009-016-0811-8
Reference: [16] Hussain, A., Asim, M., Jarad, F.: Variable $\lambda$-central Morrey space estimates for the fractional Hardy operators and commutators.J. Math. 2022 (2022), Article ID 5855068, 12 pages. MR 4425886, 10.1155/2022/5855068
Reference: [17] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization.Anal. Math. 36 (2010), 33-50. Zbl 1224.42025, MR 2606575, 10.1007/s10476-010-0102-8
Reference: [18] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493
Reference: [19] Mizuta, Y., Nekvinda, A., Shimomura, T.: Optimal estimates for the fractional Hardy operator.Stud. Math. 227 (2015), 1-19. Zbl 1328.47049, MR 3359954, 10.4064/sm227-1-1
Reference: [20] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent.Hokkaido Math. J. 44 (2015), 185-201. Zbl 1334.31004, MR 3532106, 10.14492/hokmj/1470053290
Reference: [21] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces.J. Funct. Anal. 262 (2012), 3665-3748. Zbl 1244.42012, MR 2899976, 10.1016/j.jfa.2012.01.004
Reference: [22] Orlicz, W.: Über konjugierte Exponentenfolgen.Stud. Math. 3 (1931), 200-212 German. Zbl 0003.25203, 10.4064/sm-3-1-200-211
Reference: [23] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029
Reference: [24] Shi, S., Fu, Z., Lu, S.: On the compactness of commutators of Hardy operators.Pac. J. Math. 307 (2020), 239-256. Zbl 1445.42015, MR 4131808, 10.2140/pjm.2020.307.239
Reference: [25] Shi, S., Lu, S.: Characterization of the central Campanato space via the commutator operator of Hardy type.J. Math. Anal. Appl. 429 (2015), 713-732. Zbl 1317.42022, MR 3342488, 10.1016/j.jmaa.2015.03.083
Reference: [26] Tan, J., Liu, Z.: Some boundedness of homogeneous fractional integrals on variable exponent function spaces.Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. Zbl 1340.42055, MR 3408398, 10.12386/A2015sxxb0030
Reference: [27] Tan, J., Liu, Z., Zhao, J.: On some multilinear commutators in variable Lebesgue spaces.J. Math. Inequal. 11 (2017), 715-734. Zbl 1375.42033, MR 3732810, 10.7153/jmi-2017-11-57
Reference: [28] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.Pure and Applied Mathematics 123. Academic Press, New York (1986). Zbl 0621.42001, MR 0869816
Reference: [29] Wang, H.: Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent.Czech. Math. J. 66 (2016), 251-269. Zbl 1413.42029, MR 3483237, 10.1007/s10587-016-0254-1
Reference: [30] Wang, H.: The continuity of commutators on Herz-type Hardy spaces with variable exponent.Kyoto J. Math. 56 (2016), 559-573. Zbl 1348.42014, MR 3542775, 10.1215/21562261-3600175
Reference: [31] Wang, H.: Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent.J. Korean Math. Soc. 54 (2017), 713-732. Zbl 1366.42018, MR 3640903, 10.4134/JKMS.j150771
Reference: [32] Wang, H., Fu, Z.: Estimates of commutators on Herz-type spaces with variable exponent and applications.Banach J. Math. Anal. 15 (2021), Article ID 36, 27 pages. Zbl 1470.42027, MR 4216372, 10.1007/s43037-021-00120-2
Reference: [33] Wang, H., Liao, F.: Boundedness of singular integral operators on Herz-Morrey spaces with variable exponent.Chin. Ann. Math., Ser. B 41 (2020), 99-116. Zbl 1431.42031, MR 4036493, 10.1007/s11401-019-0188-7
Reference: [34] Wang, H., Liu, Z.: Boundedness of singular integral operators on weak Herz type spaces with variable exponent.Ann. Funct. Anal. 11 (2020), 1108-1125. Zbl 1446.42036, MR 4133617, 10.1007/s43034-020-00075-9
Reference: [35] Wang, H., Xu, J.: Multilinear fractional integral operators on central Morrey spaces with variable exponent.J. Inequal. Appl. 2019 (2019), Article ID 311, 23 pages. Zbl 1499.42116, MR 4062057, 10.1186/s13660-019-2264-7
Reference: [36] Wang, H., Xu, J., Tan, J.: Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents.Front. Math. China 15 (2020), 1011-1034. Zbl 1472.42024, MR 4173409, 10.1007/s11464-020-0864-7
Reference: [37] Wang, L.: Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent.Bull. Korean Math. Soc. 57 (2020), 1427-1449. Zbl 1462.42026, MR 4180187, 10.4134/BKMS.b191108
Reference: [38] Wu, Q. Y., Fu, Z. W.: Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces.Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 635-654. Zbl 1407.42009, MR 3620272, 10.1007/s40840-017-0444-5
Reference: [39] Xu, J.: Variable Besov and Triebel-Lizorkin spaces.Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. Zbl 1160.46025, MR 2431378
Reference: [40] Yang, D., Yuan, W., Zhuo, C.: Triebel-Lizorkin type spaces with variable exponents.Banach J. Math. Anal. 9 (2015), 146-202. Zbl 1339.46040, MR 3336888, 10.15352/bjma/09-4-9
Reference: [41] Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability.J. Funct. Anal. 269 (2015), 1840-1898. Zbl 1342.46038, MR 3373435, 10.1016/j.jfa.2015.05.016
Reference: [42] Zhao, F., Fu, Z., Lu, S.: $M_p$ weights for bilinear Hardy operators on $\Bbb{R}^n$.Collect. Math. 65 (2014), 87-102. Zbl 1305.26042, MR 3147771, 10.1007/s13348-013-0083-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo