Previous |  Up |  Next

Article

Title: $b$-generalized skew derivations acting on Lie ideals in prime rings (English)
Author: Dhara, Basudeb
Author: Singh, Kalyan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 575-597
Summary lang: English
.
Category: math
.
Summary: Let $R$ be any noncommutative prime ring of ${\rm char}(R)\neq 2,3$, $L$ a noncentral Lie ideal of $R$ and $F$, $G$ two nonzero $b$-generalized skew derivations of $R$. Suppose that $$[F(u),u]G(u)=0$$ for all $u\in L$. Then at least one of the following conclusions holds: \item {(1)} $F(x)=\lambda x$ for all $x\in R$ and for some $\lambda \in C$, where $C$ is the extended centroid of $R$; \item {(2)} $R\subseteq M_2(K)$, the algebra of $2\times 2$ matrices over a field $K$. (English)
Keyword: derivation
Keyword: $b$-generalized derivation
Keyword: $b$-generalized skew derivation
Keyword: Lie ideal
Keyword: prime ring
MSC: 16N60
MSC: 16W25
DOI: 10.21136/CMJ.2024.0507-23
.
Date available: 2024-07-10T14:57:29Z
Last updated: 2024-07-15
Stable URL: http://hdl.handle.net/10338.dmlcz/152459
.
Reference: [1] Albaş, E., Argaç, N., Filippis, V. De: Posner's second theorem and some related annihilating conditions on Lie ideals.Filomat 32 (2018), 1285-1301. Zbl 1499.16052, MR 3848105, 10.2298/FIL1804285A
Reference: [2] Bergen, J., Herstein, I. N., Kerr, J. W.: Lie ideals and derivations of prime rings.J. Algebra 71 (1981), 259-267. Zbl 0463.16023, MR 0627439, 10.1016/0021-8693(81)90120-4
Reference: [3] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings.Proc. Am. Math. Soc. 103 (1988), 723-728. Zbl 0656.16006, MR 0947646, 10.1090/S0002-9939-1988-0947646-4
Reference: [4] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation.J. Algebra 288 (2005), 59-77. Zbl 1073.16021, MR 2138371, 10.1016/j.jalgebra.2003.12.032
Reference: [5] Dhara, B., Argac, N., Albas, E.: Vanishing derivations and co-centralizing generalized derivations on multilinear polynomials in prime rings.Commun. Algebra 44 (2016), 1905-1923. Zbl 1344.16036, MR 3490654, 10.1080/00927872.2015.1027393
Reference: [6] Filippis, V. De: Annihilators and power values of generalized skew derivations on Lie ideals.Can. Math. Bull. 59 (2016), 258-270. Zbl 1357.16056, MR 3492637, 10.4153/CMB-2015-077-x
Reference: [7] Filippis, V. De, Vincenzo, O. M. Di: Vanishing derivations and centralizers of generalized derivations on multilinear polynomials.Commun. Algebra 40 (2012), 1918-1932. Zbl 1258.16043, MR 2945689, 10.1080/00927872.2011.553859
Reference: [8] Filippis, V. De, Scudo, G., El-sayiad, M. S. Tammam: An identity with generalized derivations on Lie ideals, right ideals and Banach algebras.Czech. Math. J. 62 (2012), 453-468. Zbl 1249.16045, MR 2990186, 10.1007/s10587-012-0039-0
Reference: [9] Filippis, V. De, Wei, F.: An Engel condition with $X$-generalized skew derivations on Lie ideals.Commun. Algebra 46 (2018), 5433-5446. Zbl 1412.16039, MR 3923771, 10.1080/00927872.2018.1469028
Reference: [10] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras.Pac. J. Math. 60 (1975), 49-63. Zbl 0355.17005, MR 0382379, 10.2140/pjm.1975.60.49
Reference: [11] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem.Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. Zbl 0147.28602, MR 0155858, 10.1007/BF01895723
Reference: [12] Jacobson, N.: Structure of Rings.Colloquium Publications 37. AMS, Providence (1964). Zbl 0073.02002, MR 0222106, 10.1090/coll/037
Reference: [13] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems.Pac. J. Math. 134 (1988), 275-297. Zbl 0614.16028, MR 0961236, 10.2140/pjm.1988.134.275
Reference: [14] Lanski, C.: An Engel condition with derivation.Proc. Am. Math. Soc. 118 (1993), 731-734. Zbl 0821.16037, MR 1132851, 10.1090/S0002-9939-1993-1132851-9
Reference: [15] Lee, P. H., Lee, T. K.: Lie ideals of prime rings with derivations.Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. Zbl 0515.16018, MR 0718903
Reference: [16] Liu, C.-K.: An Engel condition with $b$-generalized derivations.Linear Multilinear Algebra 65 (2017), 300-312. Zbl 1356.16041, MR 3577450, 10.1080/03081087.2016.1183560
Reference: [17] III, W. S. Martindale: Prime rings satisfying generalized polynomial identity.J. Algebra 12 (1969), 576-584. Zbl 0175.03102, MR 0238897, 10.1016/0021-8693(69)90029-5
Reference: [18] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1957), 1093-1100. Zbl 0082.03003, MR 0095863, 10.1090/S0002-9939-1957-0095863-0
Reference: [19] Vukman, J.: On derivations in prime rings and Banach algebras.Proc. Am. Math. Soc. 116 (1992), 877-884. Zbl 0792.16034, MR 1072093, 10.1090/S0002-9939-1992-1072093-8
Reference: [20] Wong, T.-L.: Derivations with power-central values on multilinear polynomials.Algebra Colloq. 3 (1996), 369-378. Zbl 0864.16031, MR 1422975
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo