Previous |  Up |  Next

Article

Title: A modified Fletcher-Reeves conjugate gradient method for unconstrained optimization with applications in image restoration (English)
Author: Ahmed, Zainab Hassan
Author: Hbaib, Mohamed
Author: Abbo, Khalil K.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 4
Year: 2024
Pages: 481-499
Summary lang: English
.
Category: math
.
Summary: The Fletcher-Reeves (FR) method is widely recognized for its drawbacks, such as generating unfavorable directions and taking small steps, which can lead to subsequent poor directions and steps. To address this issue, we propose a modification to the FR method, and then we develop it into the three-term conjugate gradient method in this paper. The suggested methods, named ``HZF'' and ``THZF'', preserve the descent property of the FR method while mitigating the drawbacks. The algorithms incorporate strong Wolfe line search conditions to ensure effective convergence. Through numerical comparisons with other conjugate gradient algorithms, our modified approach demonstrates superior performance. The results highlight the improved efficacy of the HZF algorithm compared to the FR and three-term FR conjugate gradient methods. The new algorithm was applied to the problem of image restoration and proved to be highly effective in image restoration compared to other algorithms. (English)
Keyword: unconstrained optimization
Keyword: decreasing feature
Keyword: global convergence
Keyword: image restoration
Keyword: conjugate gradient technique
MSC: 35Qxx
MSC: 47N10
MSC: 49M41
MSC: 49Q15
DOI: 10.21136/AM.2024.0009-24
.
Date available: 2024-08-27T11:18:31Z
Last updated: 2024-09-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152530
.
Reference: [1] Abdullah, Z. M., Khudhur, H. M., Ahmed, A. Khairulla: Modification of the new conjugate gradient algorithm to solve nonlinear fuzzy equations.Indones. J. Electr. Eng. Comput. Sci. 27 (2022), 1525-1532. 10.11591/ijeecs.v27.i3.pp1525-1532
Reference: [2] Abed, M. M., Öztürk, U., Khudhur, H.: Spectral CG algorithm for solving fuzzy non-linear equations.Iraqi J. Comput. Sci. Math. 3 (2022), 1-10. 10.52866/ijcsm.2022.01.01.001
Reference: [3] Ahmed, A. S., Khudhur, H. M., Najmuldeen, M. S.: A new parameter in three-term conjugate gradient algorithms for unconstrained optimization.Indones. J. Electr. Eng. Comput. Sci. 23 (2021), 338-344. 10.11591/ijeecs.v23.i1.pp338-344
Reference: [4] Aji, S., Kumam, P., Siricharoen, P., Abubakar, A. B., Yahaya, M. M.: A modified conjugate descent projection method for monotone nonlinear equations and image restoration.IEEE Access 8 (2020), 158656-158665. 10.1109/ACCESS.2020.3020334
Reference: [5] Al-Baali, M.: Descent property and global convergence of the Fletcher-Reeves method with inexact line search.IMA J. Numer. Anal. 5 (1985), 121-124. Zbl 0578.65063, MR 0777963, 10.1093/imanum/5.1.121
Reference: [6] Andrei, N.: Conjugate gradient algorithms for molecular formation under pairwise potential minimization.Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems Editura Academiei Române, Bucureşti (2006), 7-26.
Reference: [7] Andrei, N.: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization.Springer Optimization and Its Applications 158. Springer, Cham (2020),\99999DOI99999 10.1007/978-3-030-42950-8 \centerline{\epsfbox{Fig3.eps}} \caption{Lena image. (In the second row are desplayed original images with percentage of salt-and-pepper noise.)} \centerline{\epsfbox{Fig4.eps}} \caption{Monkey image. (In the second row are desplayed original images with percentage of salt-and-pepper noise.)} \centerline{\epsfbox{Fig5.eps}} \caption{Woman image. (In the second row are desplayed original images with percentage of salt-and-pepper noise.)}. Zbl 1514.90250, MR 4179461
Reference: [8] Cai, J.-F., Chan, R. H., Morini, B.: Minimization of an edge-preserving regularization functional by conjugate gradient type methods.Image Processing Based on Partial Differential Equations Springer, Berlin (2007), 109-122. MR 2424224, 10.1007/978-3-540-33267-1_7
Reference: [9] Dai, Y.-H., Liao, L.-Z.: New conjugacy conditions and related nonlinear conjugate gradient methods.Appl. Math. Optim. 43 (2001), 87-101. Zbl 0973.65050, MR 1804396, 10.1007/s002450010019
Reference: [10] Dai, Y. H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property.SIAM J. Optim. 10 (1999), 177-182. Zbl 0957.65061, MR 1740963, 10.1137/S1052623497318992
Reference: [11] Dolan, E. D., Moré, J. J.: Benchmarking optimization software with performance profiles.Math. Program. 91 (2002), 201-213. Zbl 1049.90004, MR 1875515, 10.1007/s101070100263
Reference: [12] Fletcher, R., Reeves, C. M.: Function minimization by conjugate gradients.Comput. J. 7 (1964), 149-154. Zbl 0132.11701, MR 0187375, 10.1093/comjnl/7.2.149
Reference: [13] Garreau, G. A.: Numerical methods for unconstrained optimization: an introduction, by M. A. Wolfe.Math. Gaz. 65 (1981), 234-235. MR 0565858, 10.2307/3617168
Reference: [14] Gilbert, J. C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization.SIAM J. Optim. 2 (1992), 21-42. Zbl 0767.90082, MR 1147881, 10.1137/0802003
Reference: [15] Hager, W. W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search.SIAM J. Optim. 16 (2005), 170-192. Zbl 1093.90085, MR 2177774, 10.1137/03060188
Reference: [16] Hager, W. W., Zhang, H.: A survey of nonlinear conjugate gradient methods.Pac. J. Optim. 2 (2006), 35-58. Zbl 1117.90048, MR 2548208
Reference: [17] Halil, I. H., Abbo, K. K., Ebrahim, H. H.: Modifications of Hestenes and Stiefel CG method for solving unconstrained optimization problems.7th International Conference on Contemporary Information Technology and Mathematics (ICCITM) IEEE, Philadelphia (2021), 274-278. 10.1109/ICCITM53167.2021.9677756
Reference: [18] Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.J. Res. Natl. Bur. Stand. 49 (1952), 409-436. Zbl 0048.09901, MR 0060307, 10.6028/jres.049.044
Reference: [19] Ibrahim, Y. I., Khudhur, H. M.: Modified three-term conjugate gradient algorithm and its applications in image restoration.Indones. J. Electr. Eng. Comput. Sci. 28 (2022), 1510-1517. 10.11591/ijeecs.v28.i3.pp1510-1517
Reference: [20] Khudhur, H. M., Abbo, K. K.: A new type of conjugate gradient technique for solving fuzzy nonlinear algebraic equations.J. Phys., Conf. Ser. 1879 (2021), Article ID 022111, 9 pages. 10.1088/1742-6596/1879/2/022111
Reference: [21] Khudhur, H. M., Fawze, A. A. M.: An improved conjugate gradient method for solving unconstrained optimisation and image restoration problems.Int. J. Math. Model. Numer. Optim. 13 (2023), 313-325. 10.1504/IJMMNO.2023.132286
Reference: [22] Khudhur, H. M., Hassan, B. A., Aji, S.: Superior formula for gradient impulse noise reduction from images.Int. J. Appl. Comput. Math. 10 (2024), Article ID 4, 12 pages. MR 4675158, 10.1007/s40819-023-01637-w
Reference: [23] Lai, K. K., Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B.: On $q$-steepest descent method for unconstrained multiobjective optimization problems.AIMS Math. 5 (2020), 5521-5540. Zbl 1484.90101, MR 4148898, 10.3934/math.2020354
Reference: [24] Lai, K. K., Mishra, S. K., Ram, B.: A $q$-conjugate gradient algorithm for unconstrained optimization problems.Pac. J. Optim. 17 (2021), 57-76. Zbl 1462.90127, MR 4228060
Reference: [25] Lai, K. K., Mishra, S. K., Sharma, R., Sharma, M., Ram, B.: A modified $q$-BFGS algorithm for unconstrained optimization.Mathematics 11 (2023), Article ID 1420, 24 pages. 10.3390/math11061420
Reference: [26] Laylani, Y., Hassan, B. A., Khudhur, H. M.: A new class of optimization methods based on coefficient conjugate gradient.Eur. J. Pure Appl. Math. 15 (2022), 1908-1916. 10.29020/nybg.ejpam.v15i4.4575
Reference: [27] Laylani, Y. A., Hassan, B. A., Khudhur, H. M.: Enhanced spectral conjugate gradient methods for unconstrained optimization.Int. J. Math. Comput. Sci. 18 (2023), 163-172. Zbl 1524.90293, MR 4539256
Reference: [28] Liu, Y., Storey, C.: Efficient generalized conjugate gradient algorithms. I. Theory.J. Optim. Theory Appl. 69 (1991), 129-137. Zbl 0702.90077, MR 1104590, 10.1007/BF00940464
Reference: [29] Mishra, S. K., Panda, G., Ansary, M. A. T., Ram, B.: On $q$-Newton's method for unconstrained multiobjective optimization problems.J. Appl. Math. Comput. 63 (2020), 391-410. Zbl 1475.90095, MR 4100985, 10.1007/s12190-020-01322-x
Reference: [30] Mishra, S. K., Panda, G., Chakraborty, S. K., Samei, M. E., Ram, B.: On $q$-BFGS algorithm for unconstrained optimization problems.Adv. Difference Equ. 2020 (2020), Article ID 638, 23 pages. Zbl 1487.65067, MR 4175483, 10.1186/s13662-020-03100-2
Reference: [31] Mzili, T., Mzili, I., Riffi, M. E., Kurdi, M., Ali, A. H., Pamucar, D., Abualigah, L.: Enhancing COVID-19 vaccination and medication distribution routing strategies in rural regions of Morocco: A comparative metaheuristics analysis.Inf. Medicine Unlocked 46 (2024), Article ID 101467, 13 pages. 10.1016/j.imu.2024.101467
Reference: [32] Mzili, T., Mzili, I., Riffi, M. E., Pamucar, D., Kurdi, M., Ali, A. H.: Optimizing production scheduling with the spotted hyena algorithm: A novel approach to the flow shop problem.Rep. Mech. Engin. 4 (2023), 90-103. 10.31181/rme040116072023m
Reference: [33] Nocedal, J., Wright, S. J.: Numerical Optimization.Springer Series in Operations Research and Financial Engineering. Springer, New York (2006). Zbl 1104.65059, MR 2244940, 10.1007/978-0-387-40065-5
Reference: [34] Polak, E., Ribière, G.: Note sur la convergence de méthodes de directions conjuguées.Rev. Franç. Inform. Rech. Opér. 3 (1969), 35-43 French. Zbl 0174.48001, MR 0255025, 10.1051/m2an/196903r100351
Reference: [35] Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method.Numerical Analysis Lecture Notes in Mathematics 1066. Springer, Berlin (1984), 122-141. Zbl 0531.65035, MR 0760460, 10.1007/BFb0099521
Reference: [36] Rasheed, M., Ali, A. H., Alabdali, O., Shihab, S., Rashid, A., Rashid, T., Hamad, S. H. A.: The effectiveness of the finite differences method on physical and medical images based on a heat diffusion equation.J. Phys., Conf. Ser. 1999 (2021), Article ID 012080, 14 pages. 10.1088/1742-6596/1999/1/012080
Reference: [37] Samei, M. E., Ahmadi, A., Hajiseyedazizi, S. N., Mishra, S. K., Ram, B.: The existence of nonnegative solutions for a nonlinear fractional $q$-differential problem via a different numerical approach.J. Inequal. Appl. 2021 (2021), Article ID 75, 33 pages. Zbl 1504.34013, MR 4248658, 10.1186/s13660-021-02612-z
Reference: [38] Souli, C., Ziadi, R., Bencherif-Madani, A., Khudhur, H. M.: A hybrid CG algorithm for nonlinear unconstrained optimization with application in image restoration.J. Math. Model. 12 (2024), 301-317. MR 4777343, 10.22124/JMM.2024.26151.2317
Reference: [39] Sun, W., Yuan, Y.-X.: Optimization Theory and Methods: Nonlinear Programming.Springer Optimization and Its Applications 1. Springer, New York (2006). Zbl 1129.90002, MR 2232297, 10.1007/b106451
Reference: [40] Toumi, T., Raymond, P.: Upwind numerical scheme for a two-fluid two-phase flow model.14th International Conference on Numerical Methods in Fluid Dynamics Lecture Notes in Physics 453. Springer, Berlin (1995), 299-306. Zbl 0862.76053
Reference: [41] Witzgall, C.: Practical methods of optimization by R. Fletcher.Math. Comput. 53 (1989), 768-769. MR 0955799, 10.2307/2008742
Reference: [42] Zhang, L., Zhou, W., Li, D.: Some descent three-term conjugate gradient methods and their global convergence.Optim. Methods Softw. 22 (2007), 697-711. Zbl 1220.90094, MR 2321616, 10.1080/10556780701223293
Reference: [43] Zoutendijk, G.: Nonlinear programming, computational methods.Integer and Nonlinear Programming North-Holland, Amsterdam (1970), 37-86. Zbl 0336.90057, MR 0437081
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo