Previous |  Up |  Next

Article

Title: c-ideals in complemented posets (English)
Author: Chajda, Ivan
Author: Kolařík, Miroslav
Author: Länger, Helmut
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 305-316
Summary lang: English
.
Category: math
.
Summary: In their recent paper on posets with a pseudocomplementation denoted by $*$ the first and the third author introduced the concept of a $*$-ideal. This concept is in fact an extension of a similar concept introduced in distributive pseudocomplemented lattices and semilattices by several authors, see References. Now we apply this concept of a c-ideal (dually, c-filter) to complemented posets where the complementation need neither be antitone nor an involution, but still satisfies some weak conditions. We show when an ideal or filter in such a poset is a c-ideal or c-filter, and we prove basic properties of them. Finally, we prove the so-called separation theorems for c-ideals. The text is illustrated by several examples. (English)
Keyword: complemented poset
Keyword: antitone involution
Keyword: ideal
Keyword: filter
Keyword: ultrafilter
Keyword: c-ideal
Keyword: c-filter
Keyword: c-condition
Keyword: separation theorem
MSC: 06A11
MSC: 06C15
DOI: 10.21136/MB.2023.0108-22
.
Date available: 2024-09-11T13:45:05Z
Last updated: 2024-09-11
Stable URL: http://hdl.handle.net/10338.dmlcz/152536
.
Reference: [1] Birkhoff, G.: Lattice Theory.American Mathematical Society Colloquium Publications 25. AMS, Providence (1979). Zbl 0505.06001, MR 0598630
Reference: [2] Chajda, I., Länger, H.: Filters and congruences in sectionally pseudocomplemented lattices and posets.Soft Comput. 25 (2021), 8827-8837. Zbl 1498.06020, 10.1007/s00500-021-05900-4
Reference: [3] Chajda, I., Länger, H.: Filters and ideals in pseudocomplemented posets.Available at https://arxiv.org/abs/2202.03166 (2022), 14 pages.
Reference: [4] Grätzer, G.: Lattice Theory: Foundation.Birkhäuser, Basel (2011). Zbl 1233.06001, MR 2768581, 10.1007/978-3-0348-0018-1
Reference: [5] Larmerová, J., Rachůnek, J.: Translations of distributive and modular ordered sets.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat. Math. 27 (1988), 13-23. Zbl 0693.06003, MR 1039879
Reference: [6] Nimbhorkar, S. K., Nehete, J. Y.: $\delta$-ideals in pseudo-complemented distributive join-semilattices.Asian-Eur. J. Math. 14 (2021), Article ID 2150106, 7 pages. Zbl 1483.06007, MR 4280926, 10.1142/S1793557121501060
Reference: [7] Rao, M. S.: $\delta$-ideals in pseudo-complemented distributive lattices.Arch. Math., Brno 48 (2012), 97-105. Zbl 1274.06036, MR 2946209, 10.5817/AM2012-2-97
Reference: [8] Talukder, M. R., Chakraborty, H. S., Begum, S. N.: $\delta$-ideals of a pseudocomplemented semilattice.Afr. Mat. 32 (2021), 419-429. Zbl 1488.06008, MR 4259344, 10.1007/s13370-020-00834-w
.

Files

Files Size Format View
MathBohem_149-2024-3_3.pdf 235.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo