Previous |  Up |  Next

Article

Title: On linear maps leaving invariant the copositive/completely positive cones (English)
Author: Jayaraman, Sachindranath
Author: Mer, Vatsalkumar N.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 801-815
Summary lang: English
.
Category: math
.
Summary: The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices $\mathcal {S}^n$ that leave invariant the closed convex cones of copositive and completely positive matrices (${\rm COP}_n$ and ${\rm CP}_n$). A description of an invertible linear map on $\mathcal {S}^n$ such that $L({\rm CP}_n) \subset CP_n$ is obtained in terms of semipositive maps over the positive semidefinite cone $\mathcal {S}^n_+$ and the cone of symmetric nonnegative matrices $\mathcal {N}^n_+$ for $n \leq 4$, with specific calculations for $n=2$. Preserver properties of the Lyapunov map $X \mapsto AX + XA^t$, the generalized Lyapunov map $X \mapsto AXB + B^tXA^t$, and the structure of the dual of the cone $\pi ({\rm CP} _n)$ (for $n \leq 4$) are brought out. We also highlight a different way to determine the structure of an invertible linear map on $\mathcal {S}^2$ that leaves invariant the closed convex cone $\mathcal {S}^2_+$. (English)
Keyword: completely positive/copositive matrix
Keyword: proper cone
Keyword: semipositive matrix
Keyword: positive semidefinite matrix
Keyword: linear preserver problem
MSC: 15A86
MSC: 15B48
DOI: 10.21136/CMJ.2024.0002-24
.
Date available: 2024-10-03T12:37:13Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152582
.
Reference: [1] Cain, B., Hershkowitz, D., Schneider, H.: Theorems of the alternative for cones and Lyapunov regularity of matrices.Czech. Math. J. 47 (1997), 487-499. Zbl 0902.15011, MR 1461427, 10.1023/A:1022463518098
Reference: [2] Chandrashekaran, A., Jayaraman, S., Mer, V. N.: Semipositivity of linear maps relative to proper cones in finite dimensional real Hilbert spaces.Electron. J. Linear Algebra 34 (2018), 304-319. Zbl 1398.15037, MR 3841397, 10.13001/1081-3810.3733
Reference: [3] Chandrashekaran, A., Jayaraman, S., Mer, V. N.: A characterization of nonnegativity relative to proper cones.Indian J. Pure Appl. Math. 51 (2020), 935-944. Zbl 1456.15029, MR 4159333, 10.1007/s13226-020-0442-4
Reference: [4] Choi, M.-D.: Completely positive linear maps on complex matrices.Linear Algebra Appl. 10 (1975), 285-290. Zbl 0327.15018, MR 0376726, 10.1016/0024-3795(75)90075-0
Reference: [5] Furtado, S., Johnson, C. R., Zhang, Y.: Linear preservers of copositive matrices.Linear Multilinear Algebra 69 (2021), 1779-1788. Zbl 1472.15040, MR 4279156, 10.1080/03081087.2019.1692775
Reference: [6] Gowda, M. S.: On copositive and completely positive cones and $Z$-transformations.Electron. J. Linear Algebra 23 (2012), 198-211. Zbl 1302.15043, MR 2889582, 10.13001/1081-3810.1515
Reference: [7] Gowda, M. S., Song, Y. J., Sivakumar, K. C.: Some characterizations of cone preserving $Z$-transformations.Ann. Oper. Res. 287 (2020), 727-736. Zbl 1444.47077, MR 4076137, 10.1007/s10479-017-2439-x
Reference: [8] Gowda, M. S., Sznajder, R.: On the irreducibility, self-duality and non-homogeneity of complete positive cones.Electron. J. Linear Algebra 26 (2013), 177-191. Zbl 1283.15104, MR 3065857, 10.13001/1081-3810.1648
Reference: [9] Gowda, M. S., Sznajder, R., Tao, J.: The automorphism group of a completely positive cone and its Lie algebra.Linear Algebra Appl. 438 (2013), 3862-3871. Zbl 1286.22007, MR 3034504, 10.1016/j.laa.2011.10.006
Reference: [10] Johnson, C. R., Smith, R. L., Tsatsomeros, M. J.: Matrix Positivity.Cambridge Tracts in Mathematics 221. Cambridge University Press, Cambridge (2020). Zbl 1469.15002, MR 4411340, 10.1017/9781108778619
Reference: [11] Loewy, R., Schneider, H.: Positive operators on the $n$-dimensional ice cream cone.J. Math. Anal. Appl. 49 (1975), 375-392. Zbl 0308.15011, MR 0407654, 10.1016/0022-247X(75)90186-9
Reference: [12] Orlitzky, M. J.: Positive and $Z$-operators on closed convex cones.Electron. J. Linear Algebra 34 (2018), 444-458. Zbl 1398.15040, MR 3871891, 10.13001/1081-3810.3782
Reference: [13] Pierce, S., al., et: A survey of linear preserver problems.Linear Multilinear Algebra 33 (1992), 1-129. MR 1346777, 10.1080/03081089208818176
Reference: [14] Shaked-Monderer, N., Berman, A.: Copositive and Completely Positive Matrices.World Scientific, Hackensack (2021). Zbl 1459.15002, MR 4274598, 10.1142/11386
Reference: [15] Shanmugapriya, A., Chandrashekaran, A.: On the dual of the tensor product of semidefinite cones.J. Anal. 32 (2024), 19-26. MR 4706938, 10.1007/s41478-023-00573-8
Reference: [16] Shitov, Y.: Linear mappings preserving the copositive cone.Proc. Am. Math. Soc. 149 (2021), 3173-3176. Zbl 1473.15031, MR 4273125, 10.1090/proc/15432
Reference: [17] Sznajder, R.: A representation theorem for the Lorentz cone automorphisms.J. Optim. Theory Appl. 202 (2024), 296-302. MR 4775763, 10.1007/s10957-022-02118-8
Reference: [18] Tam, B.-S.: On the structure of the cone of positive operators.Linear Algebra Appl. 167 (1992), 65-85. Zbl 0755.15010, MR 1155442, 10.1016/0024-3795(92)90339-C
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo