Previous |  Up |  Next

Article

Title: The Grothendieck ring of quantum double of quaternion group (English)
Author: Sun, Hua
Author: Pang, Jia
Author: Shen, Yanxi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 881-896
Summary lang: English
.
Category: math
.
Summary: Let $\Bbbk $ be an algebraically closed field of characteristic $p\neq 2$, and let $Q_8$ be the quaternion group. We describe the structures of all simple modules over the quantum double $D(\Bbbk Q_8)$ of group algebra $\Bbbk Q_8$. Moreover, we investigate the tensor product decomposition rules of all simple $D(\Bbbk Q_8)$-modules. Finally, we describe the Grothendieck ring $G_0(D(\Bbbk Q_8))$ by generators with relations. (English)
Keyword: Grothendieck ring
Keyword: simple module
Keyword: quantum double
Keyword: quaternion group
MSC: 16G30
MSC: 16T99
DOI: 10.21136/CMJ.2024.0113-24
.
Date available: 2024-10-03T12:39:15Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152586
.
Reference: [1] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608
Reference: [2] Chen, H.-X.: Irreducible representations of a class of quantum doubles.J. Algebra 225 (2000), 391-409. Zbl 0952.16032, MR 1743667, 10.1006/jabr.1999.8135
Reference: [3] Chen, H.-X.: Finite-dimensional representations of a quantum double.J. Algebra 251 (2002), 751-789. Zbl 1019.16025, MR 1919152, 10.1006/jabr.2002.9144
Reference: [4] Chen, H.-X.: Representations of a class of Drinfeld's doubles.Commun. Algebra 33 (2005), 2809-2825. Zbl 1081.16039, MR 2159507, 10.1081/AGB-200065383
Reference: [5] Dong, J.: Grothendieck ring of quantum double of finite groups.Czech. Math. J. 60 (2010), 869-879. Zbl 1212.16057, MR 2672420, 10.1007/s10587-010-0054-y
Reference: [6] Dong, J., Chen, H.: The representations of quantum double of dihedral groups.Algebra Colloq. 20 (2013), 95-108. Zbl 1281.16042, MR 3020721, 10.1142/S1005386713000096
Reference: [7] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [8] Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of mudules over the restricted quantum universal enveloping algebra associated to $\mathfrak{sl}_2$.J. Algebra 330 (2011), 103-129. Zbl 1273.17019, MR 2774620, 10.1016/j.jalgebra.2011.01.010
Reference: [9] Liu, G., Oystaeyen, F. Van, Zhang, Y.: Reprensentations of the small quasi-quantum group $Qu_q(\mathfrak{sl}_2)$.Bull. Belg. Math. Soc. - Simon Stevin 23 (2016), 779-800. Zbl 1364.17020, MR 3593575, 10.36045/bbms/1483671626
Reference: [10] Liu, G., Oystaeyen, F. Van, Zhang, Y.: Quasi-Frobenius-Lusztig kernels for simple Lie algebras.Trans. Am. Math. Soc. 369 (2017), 2049-2086. Zbl 1407.17019, MR 3581227, 10.1090/tran/6731
Reference: [11] Majid, S.: Doubles of quasitriangular Hopf algebras.Commun. Algebra 19 (1991), 3061-3073. Zbl 0767.16014, MR 1132774, 10.1080/00927879108824306
Reference: [12] Mason, G.: The quantum double of a finite group and its role in conformal field theory.Groups '93 Galway/St. Andrews. Volume 2 London Mathematical Society Lecture Note Series 212. Cambridge University Press, Cambridge (1995). Zbl 0856.20005, MR 1337285, 10.1017/CBO9780511629297.009
Reference: [13] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Regional Conference Series in Mathematics 82. AMS, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [14] Suter, R.: Modules over $\mathfrak{U}_q(\mathfrak{sl}_2)$.Commun. Math. Phys. 163 (1994), 359-393. Zbl 0851.17015, MR 1284788, 10.1007/BF02102012
Reference: [15] Witherspoon, S. J.: The representation ring of the quantum double of a finite group.J. Algebra 179 (1996), 305-329. Zbl 0840.19001, MR 1367852, 10.1006/jabr.1996.0014
Reference: [16] Xiao, J.: Finite dimensional representations of $U_t$(sl(2)) at roots of unity.Can. J. Math. 49 (1997), 772-787. Zbl 0901.17009, MR 1471056, 10.4153/CJM-1997-038-4
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo