Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
finite group; $p$-supersoluble group; $p$-nilpotent group; the $\Pi $-property
Summary:
Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $ |G/K : N_{G/K}(HK/K\cap L/K )| $ is a $\pi (HK/K\cap L/K)$-number. We obtain some criteria for the $p$-supersolubility or $p$-nilpotency of a finite group and extend some known results by concerning some subgroups that satisfy the $\Pi $-property.
References:
[1] Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N.: On $\mathcal U_c$-normal subgroups of finite groups. Algebra Colloq. 14 (2007), 25-36 \99999DOI99999 10.1142/S1005386707000041 . DOI 10.1142/S1005386707000041 | MR 2278107 | Zbl 1126.20012
[2] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. de Gruyter Expositions in Mathematics 53. Walter de Gruyter, Berlin (2010),\99999DOI99999 10.1515/9783110220612 . MR 2762634 | Zbl 1206.20019
[3] Chen, Z.: On a theorem of Srinivasan. J. Southwest Normal Univ., Ser. B 12 (1987), 1-4 Chinese. Zbl 0732.20008
[4] Doerk, K., Hawkes, T.: Finite Soluble Groups. de Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992),\99999DOI99999 10.1515/9783110870138 . MR 1169099 | Zbl 0753.20001
[5] Gorenstein, D.: Finite Groups. Chelsea Publishing, New York (1980),\99999MR99999 0569209 . MR 0569209 | Zbl 0463.20012
[6] Guo, W.: Structure Theory for Canonical Classes of Finite Groups. Springer, Berlin (2015),\99999DOI99999 10.1007/978-3-662-45747-4 . MR 3331254 | Zbl 1343.20021
[7] Guo, W., Shum, K.-P., Skiba, A. N.: $X$-quasinormal subgroups. Sib. Math. J. 48 (2007), 593-605 \99999DOI99999 10.1007/s11202-007-0061-x . MR 2355370 | Zbl 1153.20304
[8] He, X., Li, Y., Wang, Y.: On weakly $SS$-permutable subgroups of a finite group. Publ. Math. Debr. 77 (2010), 65-77 \99999DOI99999 10.5486/pmd.2010.4565 . MR 2675734 | Zbl 1214.20027
[9] Huppert, B.: Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German \99999DOI99999 10.1007/978-3-642-64981-3 . MR 0224703 | Zbl 0217.07201
[10] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221 German \99999DOI99999 10.1007/BF01195169 . MR 0147527 | Zbl 0102.26802
[11] Li, B.: On $\Pi$-property and $\Pi$-normality of subgroups of finite groups. J. Algebra 334 (2011), 321-337 \99999DOI99999 10.1016/j.jalgebra.2010.12.018 . MR 2787667 | Zbl 1248.20020
[12] Li, S., He, X.: On normally embedded subgroups of prime power order in finite groups. Commun. Algebra 36 (2008), 2333-2340. DOI 10.1080/00927870701509370 | MR 2418390 | Zbl 1146.20015
[13] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of SS-quasinormality of some subgroups on the structure of finite groups. J. Algebra 319 (2008), 4275-4287 \99999DOI99999 10.1016/j.jalgebra.2008.01.030 . MR 2407900 | Zbl 1152.20019
[14] Li, Y. M., He, X. L., Wang, Y. M.: On $s$-semipermutable subgroups of finite groups. Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222 \99999DOI99999 10.1007/s10114-010-7609-6 . MR 2727302 | Zbl 1209.20018
[15] Li, Y., Miao, L.: $p$-hypercyclically embedding and $\Pi$-property of subgroups of finite groups. Commun. Algebra 45 (2017), 3468-3474 \99999DOI99999 10.1080/00927872.2016.1236939 . MR 3609352 | Zbl 1371.20016
[16] Li, Y., Qiao, S., Su, N., Wang, Y.: On weakly s-semipermutable subgroups of finite groups. J. Algebra 371 (2012), 250-261 \99999DOI99999 10.1016/j.jalgebra.2012.06.025 . MR 2975395 | Zbl 1269.20020
[17] Liu, J., Li, S., Shen, Z., Liu, X.: Finite groups with some CAP-subgroups. Indian J. Pure Appl. Math. 42 (2011), 145-156 \99999DOI99999 10.1007/s13226-011-0009-5 . MR 2823263 | Zbl 1309.20011
[18] Lu, J., Li, S.: On $S$-semipermutable subgroups of finite groups. J. Math. Res. Expo. 29 (2009), 985-991 \99999DOI99999 10.3770/j.issn:1000-341X.2009.06.005 . MR 2590215 | Zbl 1212.20037
[19] Skiba, A. N.: On weakly $s$-permutable subgroups of finite groups. J. Algebra 315 (2007), 192-209 \99999DOI99999 10.1016/j.jalgebra.2007.04.025 . MR 2344341 | Zbl 1130.20019
[20] Su, N., Li, Y., Wang, Y.: A criterion of $p$-hypercyclically embedded subgroups of finite groups. J. Algebra 400 (2014), 82-93 \99999DOI99999 10.1016/j.jalgebra.2013.11.007 . MR 3147365 | Zbl 1300.20030
[21] Wang, Y.: $C$-normality of groups and its properties. J. Algebra 180 (1996), 954-965 \99999DOI99999 10.1006/jabr.1996.0103 . MR 1379219 | Zbl 0847.20010
[22] Wang, Y., Wei, H.: $c^\sharp$-normality of groups and its properties. Algebr. Represent. Theory 16 (2013), 193-204 \99999DOI99999 10.1007/s10468-011-9301-7 . MR 3018185 | Zbl 1266.20020
[23] Zhong, G., Lin, S.-X.: On $c^\sharp$-normal subgroups of finite groups. J. Algebra Appl. 16 (2017), Article ID 1750160, 11 pages \99999DOI99999 10.1142/S0219498817501602 . MR 3661627 | Zbl 1396.20013
Partner of
EuDML logo