[1] Bailey, T.N., Eastwood, M.G., Gover, A.R.:
Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. 24 (1994), 1191–1217.
MR 1322223 |
Zbl 0828.53012
[4] Boe, D.D., Collingwood, D.H.:
A comparison theory for the structure of induced representations II. Math. Z. 190 (1985), 1–11.
MR 0793343
[5] Borho, W., Jantzen, J.C.:
Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra. Invent. Math., 39 (1977), 1–53.
DOI 10.1007/BF01695950 |
MR 0453826
[6] Calderbank, D.M.J., Diemer, T.:
Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103.
MR 1856258 |
Zbl 0985.58002
[8] Čap, A., Slovák, J.:
Bundles of Weyl structures and invariant calculus for parabolic geometries. Contemp. Math., vol. 788, American Mathematical Society, 2003, pp. 53–72.
MR 4636019
[9] Čap, A., Slovák, J.:
Parabolic geometries. I, Background and general theory. Mathematical Surveys and Monographs, vol. 154, Amer. Math. Soc., Providence, RI, 2009, pp. x+628.
MR 2532439
[11] Cartan, E.: Les espaces à connexion conforme. Ann. Soc. Pol. Math. 2 (1923), 171–202.
[12] Eastwood, M.G.:
Variations on the de Rham complex. Notices Amer. Math. Soc. 46 (11) (1999), 1368–1376.
MR 1723246
[13] Eastwood, M.G., Rice, J.W.:
Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. 109 (1987), 207–228.
MR 0880414 |
Zbl 0659.53047
[14] Eastwood, M.G., Rice, J.W.:
Erratum: “Conformally invariant differential operators on Minkowski space and their curved analogues”. Comm. Math. Phys. 144 (1) (1992), 213.
MR 1151252
[16] Enright, T., Shelton, B.:
Categories of highest weight modules: Applications to classical Hermitian symmetric pairs. Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94 pp.
MR 0888703
[19] Kirillov, A.A.:
Invariant operators over geometric quantitie. Current problems in mathematics, vol. 16, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1980, (Russian), VINITI, 3–29.
MR 0611158
[20] Kolář, I., Michor, P., Slovák, J.:
Natural operations in differential geometry. Springer, 1993, 434 pp.
MR 1202431 |
Zbl 0782.53013
[21] Kostant, B.:
Verma modules and the existence of quasi invariant differential operators. Non-Commutative Harmonic Analysis, vol. LNM 466, Springer, 1975, 101–128.
DOI 10.1007/BFb0082201 |
MR 0396853
[23] Návrat, A.: A Grassmannian Analogue of Paneitz Operator. to appear.
[24] Návrat, A.: Non-standard Operators in Almost Grassmannian Geometry. Ph.D. thesis, University of Vienna, 2012, 120 pp.
[25] Sawon, J.:
Homomorphisms of semiholonomic Verma modules: an exceptional case. Acta Math. Univ. Comenian. 68 (2) (1999), 257–269.
MR 1757794
[26] Sharpe, R.W.:
Differential Geometry. Graduate Texts in Mathematics, vol. 166, Springer Verlag, 1997.
MR 1453120 |
Zbl 0876.53001
[27] Slovák, J., Souček, V.: Strongly invariant differential operators on parabolic geometries modelled on $Gr(3,3)$. preprint to appear.
[28] Slovák, J., Souček, V.: First order invariant differential operators for parabolic geometries. Seminaires & Congres. France, French Math. Soc, 2000, pp. 249–273.
[29] Slovák, J., Suchánek, R.:
Notes on tractor calculi. Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham, 2021, pp. 31–72.
MR 4238608
[31] Vogan, D.A.:
Representation of Real Reductive Lie Groups. Progress in Mathematics, vol. 15, Birkhauser, Boston, Cambridge, MA, 1981.
MR 0632407
[32] Zierau, R.:
Representations in Dolbeault Cohomology. Representation Theory of Lie Groups, vol. 8, American Math. Soc., J. Adams and D. Vogan ed., 2015, IAS/Park City Mathematics Series, pp. 89–146.
MR 1737727
[33] Zuckerman, G.:
Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Ann. of Math. 106 (1977), 295–308.
DOI 10.2307/1971097 |
MR 0457636