Previous |  Up |  Next

Article

Keywords:
Cartan connections; BGG machinery; tractor calculus; induced modules; Verma modules; semiholonomic jets
Summary:
The famous Erlangen Programme was coined by Felix Klein in 1872 as an algebraic approach allowing to incorporate fixed symmetry groups as the core ingredient for geometric analysis, seeing the chosen symmetries as intrinsic invariance of all objects and tools. This idea was broadened essentially by Elie Cartan in the beginning of the last century, and we may consider (curved) geometries as modelled over certain (flat) Klein’s models. The aim of this short survey is to explain carefully the basic concepts and algebraic tools built over several recent decades. We focus on the direct link between the jets of sections of homogeneous bundles and the associated induced modules, allowing us to understand the overall structure of invariant linear differential operators in purely algebraic terms. This allows us to extend essential parts of the concepts and procedures to the curved cases.
References:
[1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. 24 (1994), 1191–1217. MR 1322223 | Zbl 0828.53012
[2] Baston, R.J.: Verma modules and differential conformal invariants. J. Differential Geom. 32 (1990), 851–898. DOI 10.4310/jdg/1214445537 | MR 1078164 | Zbl 0732.53011
[3] Boe, B.D., Collingwood, D.H.: A comparison theory for the structure of induced representations I. J. Algebra 94 (1985), 511–545. DOI 10.1016/0021-8693(85)90197-8 | MR 0792968
[4] Boe, D.D., Collingwood, D.H.: A comparison theory for the structure of induced representations II. Math. Z. 190 (1985), 1–11. MR 0793343
[5] Borho, W., Jantzen, J.C.: Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra. Invent. Math., 39 (1977), 1–53. DOI 10.1007/BF01695950 | MR 0453826
[6] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. MR 1856258 | Zbl 0985.58002
[7] Čap, A., Gover, A.R.: Tractor calculi for parabolic geometries. Trans. Amer. Math. Soc. 354 (2002), 1511–1548. DOI 10.1090/S0002-9947-01-02909-9 | MR 1873017
[8] Čap, A., Slovák, J.: Bundles of Weyl structures and invariant calculus for parabolic geometries. Contemp. Math., vol. 788, American Mathematical Society, 2003, pp. 53–72. MR 4636019
[9] Čap, A., Slovák, J.: Parabolic geometries. I, Background and general theory. Mathematical Surveys and Monographs, vol. 154, Amer. Math. Soc., Providence, RI, 2009, pp. x+628. MR 2532439
[10] Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand sequences. Ann. of Math. 154 (2001), 97–113. DOI 10.2307/3062111 | MR 1847589
[11] Cartan, E.: Les espaces à connexion conforme. Ann. Soc. Pol. Math. 2 (1923), 171–202.
[12] Eastwood, M.G.: Variations on the de Rham complex. Notices Amer. Math. Soc. 46 (11) (1999), 1368–1376. MR 1723246
[13] Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. 109 (1987), 207–228. MR 0880414 | Zbl 0659.53047
[14] Eastwood, M.G., Rice, J.W.: Erratum: “Conformally invariant differential operators on Minkowski space and their curved analogues”. Comm. Math. Phys. 144 (1) (1992), 213. MR 1151252
[15] Eastwood, M.G., Slovák, J.: Semi-holonomic Verma modules. J. Algebra 197 (1997), 424–448. DOI 10.1006/jabr.1997.7136 | MR 1483772
[16] Enright, T., Shelton, B.: Categories of highest weight modules: Applications to classical Hermitian symmetric pairs. Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94 pp. MR 0888703
[18] Graham, C.R., Jenne, R., Mason, J., Sparling, A.J.: Conformally invariant powers of the Laplacian, I: Existence. J. London Math. Soc. 46 (1992), 557–565. DOI 10.1112/jlms/s2-46.3.557 | MR 1190438 | Zbl 0726.53010
[19] Kirillov, A.A.: Invariant operators over geometric quantitie. Current problems in mathematics, vol. 16, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1980, (Russian), VINITI, 3–29. MR 0611158
[20] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry. Springer, 1993, 434 pp. MR 1202431 | Zbl 0782.53013
[21] Kostant, B.: Verma modules and the existence of quasi invariant differential operators. Non-Commutative Harmonic Analysis, vol. LNM 466, Springer, 1975, 101–128. DOI 10.1007/BFb0082201 | MR 0396853
[22] Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49 (1977), 496–511. DOI 10.1016/0021-8693(77)90254-X | MR 0476813 | Zbl 0381.17006
[23] Návrat, A.: A Grassmannian Analogue of Paneitz Operator. to appear.
[24] Návrat, A.: Non-standard Operators in Almost Grassmannian Geometry. Ph.D. thesis, University of Vienna, 2012, 120 pp.
[25] Sawon, J.: Homomorphisms of semiholonomic Verma modules: an exceptional case. Acta Math. Univ. Comenian. 68 (2) (1999), 257–269. MR 1757794
[26] Sharpe, R.W.: Differential Geometry. Graduate Texts in Mathematics, vol. 166, Springer Verlag, 1997. MR 1453120 | Zbl 0876.53001
[27] Slovák, J., Souček, V.: Strongly invariant differential operators on parabolic geometries modelled on $Gr(3,3)$. preprint to appear.
[28] Slovák, J., Souček, V.: First order invariant differential operators for parabolic geometries. Seminaires & Congres. France, French Math. Soc, 2000, pp. 249–273.
[29] Slovák, J., Suchánek, R.: Notes on tractor calculi. Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham, 2021, pp. 31–72. MR 4238608
[30] Tanaka, N.: On the equivalence problem associated with simple graded Lie algebras. Hokkaido Math. J. 8 (1979), 23–84. DOI 10.14492/hokmj/1381758416 | MR 0533089
[31] Vogan, D.A.: Representation of Real Reductive Lie Groups. Progress in Mathematics, vol. 15, Birkhauser, Boston, Cambridge, MA, 1981. MR 0632407
[32] Zierau, R.: Representations in Dolbeault Cohomology. Representation Theory of Lie Groups, vol. 8, American Math. Soc., J. Adams and D. Vogan ed., 2015, IAS/Park City Mathematics Series, pp. 89–146. MR 1737727
[33] Zuckerman, G.: Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Ann. of Math. 106 (1977), 295–308. DOI 10.2307/1971097 | MR 0457636
Partner of
EuDML logo