Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions.
(English).Czechoslovak Mathematical Journal,
vol. 74
(2024),
issue 4,
pp. 1165-1184
Keywords: local boundedness; minimizer; variational integral; anisotropic growth; convex; polyconvex
Summary: This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi's iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function $g$, and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.
[2] Cupini, G., Focardi, M., Leonetti, F., Mascolo, E.: On the Hölder continuity for a class of vectorial problems. Adv. Nonlinear Anal. 9 (2020), 1008-1025. DOI 10.1515/anona-2020-0039 | MR 3998218 | Zbl 1429.49042
[3] Cupini, G., Leonetti, F., Mascolo, E.: Local boundedness for minimizers of some polyconvex integrals. Arch. Ration. Mech. Anal. 224 (2017), 269-289. DOI 10.1007/s00205-017-1074-7 | MR 3609252 | Zbl 1365.49035
[4] Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general growth conditions. Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 67-86. DOI 10.3934/dcdsb.2009.11.67 | MR 2461809 | Zbl 1158.49040
[9] Granucci, T., Randolfi, M.: Regularity for local minima of a special class of vectorial problems with fully anisotropic growth. Manuscr. Math. 170 (2023), 677-772. DOI 10.1007/s00229-021-01360-0 | MR 4548604 | Zbl 1512.49038
[11] Leonetti, F., Petricca, P. V.: Regularity for minimizers of integrals with nonstandard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 258-264. DOI 10.1016/j.na.2015.09.009 | MR 3414930 | Zbl 1327.49064
[12] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989), 267-284. DOI 10.1007/BF00251503 | MR 0969900 | Zbl 0667.49032