Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Laplacian eigenvalue; ratio; tree; bound
Summary:
Let $G$ be a simple connected undirected graph. The Laplacian spectral ratio of $G$ is defined as the quotient between the largest and second smallest Laplacian eigenvalues of $G$, which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with $n$ vertices, which improves some known results of Z. You and B. Liu (2012).
References:
[1] Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469 (2008), 93-153. DOI 10.1016/j.physrep.2008.09.002 | MR 2477097
[2] Barahona, M., Pecora, L. M.: Synchronization in small-world networks. Phys. Rev. Lett. 89 (2002), Article ID 054101. DOI 10.1103/PhysRevLett.89.054101
[3] Barrett, W., Evans, E., Hall, H. T., Kempton, M.: New conjectures on algebraic connectivity and the Laplacian spread of graphs. Linear Algebra Appl. 648 (2022), 104-132. DOI 10.1016/j.laa.2022.04.021 | MR 4419000 | Zbl 1490.05154
[4] Brouwer, A. E., Haemers, W. H.: Eigenvalues and perfect matchings. Linear Algebra Appl. 395 (2005), 155-162. DOI 10.1016/j.laa.2004.08.014 | MR 2112881 | Zbl 1056.05097
[5] Chen, X., Das, K. C.: Some results on the Laplacian spread of a graph. Linear Algebra Appl. 505 (2016), 245-260. DOI 10.1016/j.laa.2016.05.002 | MR 3506494 | Zbl 1338.05158
[6] Chvátal, V.: Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973), 215-228. DOI 10.1016/0012-365X(73)90138-6 | MR 0316301 | Zbl 0256.05122
[7] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables. J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. DOI 10.1155/2010/128258 | MR 2749168 | Zbl 1204.26031
[8] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). DOI 10.1017/CBO9780511801518 | MR 2571608 | Zbl 1211.05002
[9] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. DOI 10.21136/CMJ.1973.101168 | MR 0318007 | Zbl 0265.05119
[10] Filho, D. F. T., Justel, C. M.: About the type of broom trees. Comput. Appl. Math. 42 (2023), Article ID 364, 12 pages. DOI 10.1007/s40314-023-02497-2 | MR 4670565 | Zbl 1538.05033
[11] Furtula, B., Gutman, I.: A forgotten topological index. J. Math. Chem. 53 (2015), 1184-1190. DOI 10.1007/s10910-015-0480-z | MR 3317408 | Zbl 1317.05031
[12] Goldberg, F.: Bounding the gap between extremal Laplacian eigenvalues of graphs. Linear Algebra Appl. 416 (2006), 68-74. DOI 10.1016/j.laa.2005.07.007 | MR 2232920 | Zbl 1107.05059
[13] Grone, R., Merris, R.: The Laplacian spectrum of a graph. II. SIAM J. Discrete Math. 7 (1994), 221-229. DOI 10.1137/S0895480191222653 | MR 1271994 | Zbl 0795.05092
[14] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. DOI 10.1137/0611016 | MR 1041245 | Zbl 0733.05060
[15] Gu, X., Liu, M.: A tight lower bound on the matching number of graphs via Laplacian eigenvalues. Eur. J. Comb. 101 (2022), Article ID 103468, 8 pages. DOI 10.1016/j.ejc.2021.103468 | MR 4338938 | Zbl 1480.05106
[16] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\varphi$-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. DOI 10.1016/0009-2614(72)85099-1
[17] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. DOI 10.1016/0024-3795(95)00199-2 | MR 1344588 | Zbl 0831.05044
[18] Kelmans, A. K.: The properties of the characteristic polynomial of a graph. Cybernetics-in the service of Communism 4 (1967), 27-41 Russian. MR 0392633 | Zbl 0204.24403
[19] Liu, B., Chen, S.: Algebraic conditions for $t$-tough graphs. Czech. Math. J. 60 (2010), 1079-1089. DOI 10.1007/s10587-010-0073-8 | MR 2738970 | Zbl 1224.05307
[20] Watson, G. S.: Serial correlation in regression analysis. I. Biometrika 42 (1955), 327-341. DOI 10.1093/biomet/42.3-4.327 | MR 0073096 | Zbl 0068.33201
[21] You, Z., Liu, B.: On the Laplacian spectral ratio of connected graphs. Appl. Math. Lett. 25 (2012), 1245-1250. DOI 10.1016/j.aml.2011.09.071 | MR 2947387 | Zbl 1248.05116
[22] Zhang, X.-D.: Ordering trees with algebraic connectivity and diameter. Linear Algebra Appl. 427 (2007), 301-312. DOI 10.1016/j.laa.2007.07.018 | MR 2351361 | Zbl 1125.05067
[23] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra Appl. 429 (2008), 2239-2246. DOI 10.1016/j.laa.2008.06.023 | MR 2446656 | Zbl 1144.05325
Partner of
EuDML logo