Title: | The relationship between $K_u^2\cap vH^2$ and inner functions (English) |
Author: | Yang, Xiaoyuan |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 4 |
Year: | 2024 |
Pages: | 1221-1240 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline {u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$ $(v\neq u)$. If $K_u^2\cap vH^2\neq \{0\}$, then there exists a triple $(B,b,g)$ such that $$\overline {u}v=\frac {\lambda b\overline {BO_g}}{g},$$ where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\neq \{0\}.$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$. (English) |
Keyword: | model space |
Keyword: | invariant subspace of the unilateral shift operator |
Keyword: | Toeplitz kernel |
Keyword: | inner function |
MSC: | 30J05 |
MSC: | 47A15 |
MSC: | 47B35 |
DOI: | 10.21136/CMJ.2024.0175-24 |
. | |
Date available: | 2024-12-15T06:40:24Z |
Last updated: | 2024-12-16 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152698 |
. | |
Reference: | [1] Axler, S., Chang, S. A., Sarason, D.: Products of Toeplitz operators.Integral Equations Oper. Theory 1 (1978), 285-309. Zbl 0396.47017, MR 0511973, 10.1007/BF01682841 |
Reference: | [2] Benhida, C., Fricain, E., Timotin, D.: Reducing subspaces of $C_{00}$ contractions.New York J. Math. 27 (2021), 1597-1612. Zbl 07474337, MR 4359207 |
Reference: | [3] Beurling, A.: On two problems concerning linear transformations in Hilbert space.Acta Math., Uppsala 81 (1949), 239-255. Zbl 0033.37701, MR 0027954, 10.1007/BF02395019 |
Reference: | [4] Câmara, M. C., Partington, J. R.: Multipliers and equivalences between Toeplitz kernels.J. Math. Anal. Appl. 465 (2018), 557-570. Zbl 1391.42010, MR 3806717, 10.1016/j.jmaa.2018.05.023 |
Reference: | [5] Câmara, M. C., Partington, J. R.: Toeplitz kernels and model spaces.The Diversity and Beauty of Applied Operator Theory Operator Theory: Advances and Applications 268. Springer, Cham (2018), 139-153. MR 3793302, 10.1007/978-3-319-75996-8_7 |
Reference: | [6] Douglas, R. G.: Banach Algebra Techniques in the Theory of Toeplitz Operators.Regional Conference Series in Mathematics 15. AMS, Providence (1973). Zbl 0252.47025, MR 0361894, 10.1090/cbms/015 |
Reference: | [7] Fricain, E., Hartmann, A., Ross, W. T.: Multipliers between model spaces.Stud. Math. 240 (2018), 177-191. Zbl 1394.30043, MR 3720929, 10.4064/sm8782-4-2017 |
Reference: | [8] Garcia, S. R., Ross, W. T.: Model spaces: A survey.Invariant Subspaces of the Shift Operator Contemporary Mathematics 638. AMS, Providence (2015), 197-245. Zbl 1353.47016, MR 3309355, 10.1090/conm/638 |
Reference: | [9] Garnett, J. B.: Bounded Analytic Functions.Graduate Texts in Mathematics 236. Springer, New York (2007). Zbl 1106.30001, MR 2261424, 10.1007/0-387-49763-3 |
Reference: | [10] Hartmann, A., Mitkovski, M.: Kernels of Toeplitz operators.Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions Contemporary Mathematics 679. AMS, Providence (2016), 147-177. Zbl 1375.30084, MR 3589674, 10.1090/conm/679 |
Reference: | [11] Hayashi, E.: The kernel of a Toeplitz operator.Integral Equations Oper. Theory 9 (1986), 588-591. Zbl 0636.47023, MR 0853630, 10.1007/BF01204630 |
Reference: | [12] Martínez-Avendaño, R. A., Rosenthal, P.: An Introduction to Operators on the Hardy-Hilbert Space.Graduate Texts in Mathematics 237. Springer, New York (2007). Zbl 1116.47001, MR 2270722, 10.1007/978-0-387-48578-2 |
Reference: | [13] Nikolski, N. K.: Operators, Functions, and Systems: An Easy Reading. Volume 1. Hardy, Hankel, and Toeplitz.Mathematical Surveys and Monographs 92. AMS, Providence (2002). Zbl 1007.47001, MR 1864396, 10.1090/surv/092 |
Reference: | [14] Sarason, D.: Algebraic properties of truncated Toeplitz operators.Oper. Matrices 1 (2007), 491-526. Zbl 1144.47026, MR 2363975, 10.7153/oam-01-29 |
Reference: | [15] Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space.Universitext. Springer, New York (2010). Zbl 1234.47001, MR 2760647, 10.1007/978-1-4419-6094-8 |
Reference: | [16] Yang, X.: The relationship between model spaces and the invariant subspaces of the unilateral shift operator.Contemp. Math. 5 (2024), 1474-1486. 10.37256/cm.5220243835 |
Reference: | [17] Yang, X., Li, R., Lu, Y.: The kernel spaces and Fredholmness of truncated Toeplitz operators.Turk. J. Math. 45 (2021), 2180-2198. Zbl 07578944, MR 4316916, 10.3906/mat-2102-109 |
Reference: | [18] Yang, X., Li, R., Yang, Y., Lu, Y.: Finite-rank and compact defect operators of truncated Toeplitz operators.J. Math. Anal. Appl. 510 (2022), Article ID 126032, 26 pages. Zbl 07474373, MR 4372793, 10.1016/j.jmaa.2022.126032 |
Reference: | [19] Yang, X., Lu, Y., Yang, Y.: Compact commutators of truncated Toeplitz operators on the model space.Ann. Funct. Anal. 13 (2022), Article ID 49, 21 pages. Zbl 07548894, MR 4446266, 10.1007/s43034-022-00196-3 |
. |
Fulltext not available (moving wall 24 months)