Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
matrix majorization; linear preserver; permutation
Summary:
Let $A$, $B$ be $n \times m$ matrices. The concept of matrix majorization means the $j$th column of $A$ is majorized by the $j$th column of $B$ and this is done for all $j$ by a doubly stochastic matrix $D$. We define rc-majorization that extended matrix majorization to columns and rows of matrices. Also, the linear preservers of rc-majorization will be characterized.
References:
[1] Ando, T.: Majorization, doubly stochastic matrices, and comparison of eigenvalues. Linear Algebra Appl. 118 (1989), 163-248. DOI 10.1016/0024-3795(89)90580-6 | MR 0995373 | Zbl 0673.15011
[2] Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York (1997). DOI 10.1007/978-1-4612-0653-8 | MR 1477662 | Zbl 0863.15001
[3] Dahl, G., Guterman, A., Shteyner, P.: Majorization for matrix classes. Linear Algebra Appl. 555 (2018), 201-221. DOI 10.1016/j.laa.2018.06.003 | MR 3834200 | Zbl 1401.15039
[4] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994). DOI 10.1017/CBO9780511840371 | MR 1288752 | Zbl 0801.15001
Partner of
EuDML logo