Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
conforming simplicial partition; product polytope; red refinement; finite element method
Summary:
We propose some approaches for the generation of conforming simplicial partitions with various regularity properties for polytopic domains that are products or a union of products, thus generalizing our earlier results. The techniques presented can be used for finite element simulations of higher-dimensional problems.
References:
[1] Apel, T., Düvelmeyer, N.: Transformation of hexahedral finite element meshes into tetrahedral meshes according to quality criteria. Computing 71 (2003), 293-304. DOI 10.1007/s00607-003-0031-5 | MR 2027214 | Zbl 1037.65125
[2] Bey, J.: Simplicial grid refinement: On Freudenthal's algorithm and the optimal number of congruence classes. Numer. Math. 85 (2000), 1-29. DOI 10.1007/s002110050475 | MR 1751367 | Zbl 0949.65128
[3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[4] Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. (2) 43 (1942), 580-582 German. DOI 10.2307/1968813 | MR 0007105 | Zbl 0060.40701
[5] Hacon, D., Tomei, C.: Tetrahedral decompositions of hexahedral meshes. Eur. J. Comb. 10 (1989), 435-443. DOI 10.1016/S0195-6698(89)80017-4 | MR 1014551 | Zbl 0723.05040
[6] Khademi, A., Korotov, S., Vatne, J. E.: On the generalization of the Synge-Křížek maximum angle condition for $d$-simplices. J. Comput. Appl. Math. 358 (2019), 29-33. DOI 10.1016/j.cam.2019.03.003 | MR 3926696 | Zbl 1426.65177
[7] Khademi, A., Korotov, S., Vatne, J. E.: On mesh regularity conditions for simplicial finite elements. Numerical Mathematics and Advanced Applications. ENUMATH 2019 Lecture Notes in Computational Science and Engineering 139. Springer, Cham (2021), 633-640. DOI 10.1007/978-3-030-55874-1_62 | MR 4266542 | Zbl 1475.65192
[8] Korotov, S., Křížek, M.: On conforming tetrahedralizations of prismatic partitions. Differential and Difference Equations with Applications Springer Proceedings in Mathematics & Statistics 47. Springer, New York (2013), 63-68. DOI 10.1007/978-1-4614-7333-6_5 | MR 3110255 | Zbl 1317.65063
[9] Korotov, S., Vatne, J. E.: Preserved structure constants for red refinements of product elements. Numerical Geometry, Grid Generation and Scientific Computing Lecture Notes in Computational Science Engineering 143. Springer, Cham (2021), 241-248. DOI 10.1007/978-3-030-76798-3_15 | MR 4391448 | Zbl 1496.74120
[10] Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232. DOI 10.21136/AM.1991.104461 | MR 1109126 | Zbl 0728.41003
[11] Kuhn, H. W.: Some combinatorial lemmas in topology. IBM J. Res. Dev. 4 (1960), 518-524. DOI 10.1147/rd.45.0518 | MR 0124038 | Zbl 0109.15603
Partner of
EuDML logo