Previous |  Up |  Next

Article

Title: Theoretical analysis for $\ell _{1}$-$\ell _{2}$ minimization with partial support information (English)
Author: Li, Haifeng
Author: Guo, Leiyan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 1
Year: 2025
Pages: 125-148
Summary lang: English
.
Category: math
.
Summary: We investigate the recovery of $k$-sparse signals using the $\ell _{1}$-$\ell _{2}$ minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume $k$-sparse signals ${\bf x}$ with the prior support $T$ which is composed of $g$ true indices and $b$ wrong indices, i.e., $|T|=g+b\leq k$. First, we derive a new condition based on RIP of order $2\alpha $ $(\alpha =k-g)$ to guarantee signal recovery via $\ell _{1}$-$\ell _{2}$ minimization with partial support information. Second, we also derive the high order RIP with $t\alpha $ for some $t\geq 3$ to guarantee signal recovery via $\ell _{1}$-$\ell _{2}$ minimization with partial support information. (English)
Keyword: compressed sensing
Keyword: sparse optimization
Keyword: algorithm
MSC: 41A27
MSC: 65D15
MSC: 94A12
DOI: 10.21136/AM.2024.0068-24
.
Date available: 2025-03-07T09:27:28Z
Last updated: 2025-03-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152888
.
Reference: [1] Bi, N., Tan, J., Tang, W.-S.: A new sufficient condition for sparse vector recovery via $\ell_{1}$-$\ell_{2}$ local minimization.Anal. Appl., Singap. 19 (2021), 1019-1031. Zbl 1492.94029, MR 4328764, 10.1142/S0219530521500068
Reference: [2] Bi, N., Tang, W.-S.: A necessary and sufficient condition for sparse vector recovery via $\ell_{1}-\ell_{2}$ minimization.Appl. Comput. Harmon. Anal. 56 (2022), 337-350. Zbl 1485.90095, MR 4324183, 10.1016/j.acha.2021.09.003
Reference: [3] Cai, T., Wang, L., Xu, G.: Shifting inequality and recovery of sparse signals.IEEE Trans. Signal Process. 58 (2010), 1300-1308. Zbl 1392.94117, MR 2730209, 10.1109/TSP.2009.2034936
Reference: [4] Cai, T., Zhang, A.: Compressed sensing and affine rank minimization under restricted isometry.IEEE Trans. Signal Process. 61 (2013), 3279-3290. Zbl 1393.94185, MR 3070321, 10.1109/TSP.2013.2259164
Reference: [5] Candès, E. J.: The restricted isometry property and its implications for compressed sensing.C. R., Math., Acad. Sci. Paris 346 (2008), 589-592. Zbl 1153.94002, MR 2412803, 10.1016/j.crma.2008.03.014
Reference: [6] Candès, E. J., Plan, Y.: Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements.IEEE Trans. Inf. Theory 57 (2011), 2342-2359. Zbl 1366.90160, MR 2809094, 10.1109/TIT.2011.2111771
Reference: [7] Candès, E. J., Tao, T.: Decoding by linear programming.IEEE Trans. Inf. Theory 51 (2005), 4203-4215. Zbl 1264.94121, MR 2243152, 10.1109/TIT.2005.858979
Reference: [8] Donoho, D. L., Elad, M., Temlyakov, V. N.: Stable recovery of sparse overcomplete representations in the presence of noise.IEEE Trans. Inf. Theory 52 (2006), 6-18. Zbl 1288.94017, MR 2237332, 10.1109/TIT.2005.860430
Reference: [9] Donoho, D. L., Huo, X.: Uncertainty principles and ideal atomic decomposition.IEEE Trans. Inf. Theory 47 (2001), 2845-2862. Zbl 1019.94503, MR 1872845, 10.1109/18.959265
Reference: [10] Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing.Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). Zbl 1315.94002, MR 3100033, 10.1007/978-0-8176-4948-7
Reference: [11] Ge, H., Chen, W.: An optimal recovery condition for sparse signals with partial support information via OMP.Circuits Syst. Signal Process. 38 (2019), 3295-3320. MR 3898369, 10.1007/s00034-018-01022-9
Reference: [12] Ge, H., Chen, W., Ng, M. K.: New restricted isometry property analysis for $\ell_{1}-\ell_{2}$ minimization methods.SIAM J. Imaging Sci. 14 (2021), 530-557. Zbl 1474.94041, MR 4252074, 10.1137/20M136517X
Reference: [13] He, Z., He, H., Liu, X., Wen, J.: An improved sufficient condition for sparse signal recovery with minimization of $\ell_{1}-\ell_{2}$.IEEE Signal Process. Lett. 29 (2022), 907-911. 10.1109/LSP.2022.3158839
Reference: [14] Herzet, C., Soussen, C., Idier, J., Gribonval, R.: Exact recovery conditions for sparse representations with partial support information.IEEE Trans. Inf. Theory 59 (2013), 7509-7524. Zbl 1364.94128, MR 3124657, 10.1109/TIT.2013.2278179
Reference: [15] Jacques, L.: A short note on compressed sensing with partially known signal support.Signal Process. 90 (2010), 3308-3312. Zbl 1197.94063, 10.1016/j.sigpro.2010.05.025
Reference: [16] Li, P., Chen, W.: Signal recovery under cumulative coherence.J. Comput. Appl. Math. 346 (2019), 399-417. Zbl 1405.94025, MR 3864169, 10.1016/j.cam.2018.07.019
Reference: [17] Ma, T.-H., Lou, Y., Huang, T.-Z.: Truncated $\ell_{1-2}$ models for sparse recovery and rank minimization.SIAM J. Imaging Sci. 10 (2017), 1346-1380. Zbl 1397.94021, MR 3687849, 10.1137/16M1098929
Reference: [18] Mo, Q., Li, S.: New bounds on the restricted isometry constant $\delta_{2k}$.Appl. Comput. Harmon. Anal. 31 (2011), 460-468. Zbl 1231.94027, MR 2836035, 10.1016/j.acha.2011.04.005
Reference: [19] Scarlett, J., Evans, J. S., Dey, S.: Compressed sensing with prior information: Information-theoretic limits and practical decoders.IEEE Trans. Signal Process. 61 (2013), 427-439. Zbl 1393.94759, MR 3009136, 10.1109/TSP.2012.2225051
Reference: [20] Borries, R. von, Miosso, C. J., Potes, C.: Compressed sensing using prior information.2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing IEEE, Philadelphia (2007), 121-124. 10.1109/CAMSAP.2007.4497980
Reference: [21] Wang, W., Wang, J.: Improved sufficient condition of $\ell_{1-2}$-minimisation for robust signal recovery.Electron. Lett. 55 (2019), 1199-1201. 10.1049/el.2019.2205
Reference: [22] Wen, J., Weng, J., Tong, C., Ren, C., Zhou, Z.: Sparse signal recovery with minimization of 1-norm minus 2-norm.IEEE Trans. Vehicular Technol. 68 (2019), 6847-6854. 10.1109/TVT.2019.2919612
Reference: [23] Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of $\ell_{1-2}$ for compressed sensing.SIAM J. Sci. Comput. 37 (2015), A536--A563. Zbl 1316.90037, MR 3315229, 10.1137/140952363
Reference: [24] Zhang, J., Zhang, S., Meng, X.: $\ell_{1-2}$ minimisation for compressed sensing with partially known signal support.Electron. Lett. 56 (2020), 405-408. 10.1049/el.2019.3859
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo