Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Fourier transform; Henstock-Kurzweil integral; bounded variation function
Summary:
The paper is concerned with integrability of the Fourier sine transform function when $f\in {\rm BV}_0(\mathbb {R} )$, where ${\rm BV}_0(\mathbb {R} )$ is the space of bounded variation functions vanishing at infinity. It is shown that for the Fourier sine transform function of $f$ to be integrable in the Henstock-Kurzweil sense, it is necessary that $f /x \in L^1(\mathbb {R})$. We prove that this condition is optimal through the theoretical scope of the Henstock-Kurzweil integration theory.
References:
[1] Arredondo, J. H., Bernal, M., Morales, M. G.: Fourier analysis with generalized integration. Mathematics 8 (2020), Article ID 1199, 16 pages. DOI 10.3390/math8071199
[2] Arredondo, J. H., Mendoza, F. J., Reyes, A.: On the norm continuity of the HK-Fourier transform. Electron. Res. Announc. Math. Sci. 25 (2018), 36-47. DOI 10.3934/era.2018.25.005 | MR 3810181 | Zbl 1401.26019
[3] Arredondo, J. H., Reyes, A.: Interpolation theory for the HK-Fourier transform. Rev. Unión Mat. Argent. 62 (2021), 401-413. DOI 10.33044/revuma.1911 | MR 4363338 | Zbl 1487.42008
[4] Bartle, R. G.: A Modern Theory of Integration. Graduate Studies in Mathematics 32. AMS, Providence (2001). DOI 10.1090/gsm/032 | MR 1817647 | Zbl 0968.26001
[5] Bell, R. J.: Introductory Fourier Transform Spectroscopy. Academic Press, New York (1972). DOI 10.1016/B978-0-12-085150-8.X5001-3
[6] Bloomfield, P.: Fourier Analysis of Time Series: An Introduction. Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley & Sons, Chichester (2000). DOI 10.1002/0471722235 | MR 1884963 | Zbl 0994.62093
[7] Bracewell, R. N.: The Fourier Transform and Its Applications. McGraw-Hill, New York (2000). MR 0924577 | Zbl 0561.42001
[8] Chanda, B., Majumder, D. Dutta: Digital Image Processing and Analysis. PHI Learning, New Delhi (2011).
[9] Ferraro, J. R., Basile, L. J.: Fourier Transform Infrared Spectra: Applications to Chemical Systems. Vol. 1. Academic Press, New York (1978). DOI 10.1016/C2009-0-22072-1
[10] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. John Wiley & Sons, New York (1984). MR 0767633 | Zbl 0549.28001
[11] Folland, G. B.: Fourier Analysis and Its Applications. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove (1992). MR 1145236 | Zbl 0786.42001
[12] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[13] Gray, R. M., Goodman, J. W.: Fourier Transforms: An Introduction for Engineers. The Kluwer International Series in Engineering and Computer Science 322. Kluwer Academic, Dordrecht (1995). DOI 10.1007/978-1-4615-2359-8 | Zbl 0997.42500
[14] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). DOI 10.1142/0845 | MR 1050957 | Zbl 0699.26004
[15] Liflyand, E.: Asymptotics of the Fourier sine transform of a function of bounded variation. Math. Notes 100 (2016), 93-99. DOI 10.1134/S0001434616070087 | MR 3588831 | Zbl 1362.42013
[16] Liflyand, E.: Integrability spaces for the Fourier transform of a function of bounded variation. J. Math. Anal. Appl. 436 (2016), 1082-1101. DOI 10.1016/j.jmaa.2015.12.042 | MR 3446998 | Zbl 1341.42009
[17] Liflyand, E.: The Fourier transform of a function of bounded variation: Symmetry and asymmetry. J. Fourier Anal. Appl. 24 (2018), 525-544. DOI 10.1007/s00041-017-9530-1 | MR 3776333 | Zbl 1440.42019
[18] Liflyand, E.: Functions of Bounded Variation and Their Fourier Transforms. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2019). DOI 10.1007/978-3-030-04429-9 | MR 3929690 | Zbl 1418.42001
[19] McLeod, R. M.: The Generalized Riemann Integral. The Carus Mathematical Monographs 20. Mathematical Association of America, Washington (1980). DOI 10.5948/UPO9781614440208 | MR 0588510 | Zbl 0486.26005
[20] McShane, E. J.: Integration. Princeton Mathematical Series 7. Princeton University Press, Princeton (1947). DOI 10.1515/9781400877812 | MR 0010606 | Zbl 0033.05302
[21] Torres, F. J. Mendoza, Marcías, M. G. Morales, Reyna, J. A. Escamilla, Ruiz, J. H. Arredondo: Several aspects around the Riemann-Lebesgue lemma. J. Adv. Res. Pure Math. 5 (2013), 33-46. DOI 10.5373/jarpm.1458.052712 | MR 3041342
[22] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[23] Morales, M. G., Arredondo, J. H., Mendoza, F. J.: An extension of some properties for the Fourier transform operator on $L^p(\Bbb R)$ spaces. Rev. Unión Mat. Argent. 57 (2016), 85-94. MR 3583297 | Zbl 1357.43001
[24] Peters, T. M., (eds.), J. Williams: The Fourier Transform in Biomedical Engineering. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (1998). DOI 10.1007/978-1-4612-0637-8 | MR 1634301 | Zbl 0910.92022
[25] Pinsky, M. A.: Introduction to Fourier Analysis and Wavelets. Brooks/Cole Series in Advanced Mathematics. Brooks/Cole, Pacific Grove (2002). DOI 10.1090/gsm/102 | MR 2100936 | Zbl 1065.42001
[26] Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987). MR 0924157 | Zbl 0925.00005
[27] Ruzhansky, M., Tikhonov, S.: Some problems in Fourier analysis and approximation theory. Methods of Fourier Analysis and Approximation Theory Applied and Numerical Harmonic Analysis. Birkhäuser, Basel 2016 1-19. DOI 10.1007/978-3-319-27466-9_1 | MR 3497695 | Zbl 1343.42001
[28] Sánchez-Perales, S., Torres, F. J. Mendoza, Reyna, J. A. Escamilla: Henstock-Kurzweil integral transforms. Int. J. Math. Math. Sci. 2012 (2012), Article ID 209462, 11 pages. DOI 10.1155/2012/209462 | MR 2983789 | Zbl 1253.44006
[29] Titchmarsh, E. C.: Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1937). MR 0942661 | Zbl 0017.40404
Partner of
EuDML logo