Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
ap-Henstock-Kurzweil integral; uniformly strong Lusin condition; monotone convergence theorem; $\mu _{\rm ap}$-Henstock-Kurzweil equi-integrability; Henstock's lemma
Summary:
We introduce an ap-Henstock-Kurzweil type integral with a non-atomic Radon measure and prove the Saks-Henstock type lemma. The monotone convergence theorem, $\mu _{\rm ap}$-Henstock-Kurzweil equi-integrability, and uniformly strong Lusin condition are discussed.
References:
[1] Bongiorno, D., Corrao, G.: An integral on a complete metric measure space. Real Anal. Exch. 40 (2015), 157-178. DOI 10.14321/realanalexch.40.1.0157 | MR 3365396 | Zbl 1391.26027
[2] Bullen, P. S.: The Burkill approximately continuous integral. J. Aust. Math. Soc., Ser. A 35 (1983), 236-253. DOI 10.1017/S1446788700025738 | MR 0704431 | Zbl 0533.26005
[3] Burkill, J. C.: The approximately continuous Perron integral. Math. Z. 34 (1932), 270-278. DOI 10.1007/BF01180588 | MR 1545252 | Zbl 0002.38604
[4] Cao, S. S.: The Henstock integral for Banach-valued functions. Southeast Asian Bull. Math. 16 (1992), 35-40. MR 1173605 | Zbl 0749.28007
[5] Corrao, G.: An Henstock-Kurzweil Type Integral on a Measure Metric Space: Doctoral Thesis. Universita Degli Studi Di Palermo, Palermo (2013).
[6] Piazza, L. Di, Marraffa, V., Musia{ł}, K.: Variational Henstock integrability of Banach space valued functions. Math. Bohem. 141 (2016), 287-296. DOI 10.21136/MB.2016.19 | MR 3499788 | Zbl 1413.26019
[7] Edwards, R. E.: Functional Analysis: Theory and Applications. Holt Rinehart and Winston, New York (1965). MR 0221256 | Zbl 0182.16101
[8] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[9] Henstock, R.: Linear Analysis. Butterworths, London (1967). MR 0419707 | Zbl 0172.39001
[10] Henstock, R.: Lectures on the Theory of Integration. Series in Real Analysis 1. World Scientific, Singapore (1988). DOI 10.1142/0510 | MR 0963249 | Zbl 0668.28001
[11] Henstock, R.: The General Theory of Integration. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). MR 1134656 | Zbl 0745.26006
[12] Kalita, H., Hazarika, B.: A convergence theorem for $ap$-Henstock-Kurzweil integral and its relation to topology. Filomat 36 (2022), 6831-6839. DOI 10.2298/FIL2220831K | MR 4563043
[13] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis 2. World Scientific, London (1989). DOI 10.1142/0845 | MR 1050957 | Zbl 0699.26004
[14] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000). MR 1756319 | Zbl 0941.26003
[15] Leng, N. W.: Nonabsolute Integration on Measure Spaces. Series in Real Analysis 14. World Scientific, Hackensack (2018). DOI 10.1142/10489 | MR 3752602 | Zbl 1392.28001
[16] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623813 | MR 1333890 | Zbl 0819.28004
[17] Mema, E.: Equiintegrability and controlled convergence for the Henstock-Kurzweil integral. Int. Math. Forum 8 (2013), 913-919. DOI 10.12988/imf.2013.13097 | MR 3069783 | Zbl 1285.28017
[18] Park, J. M., Lee, D. H., Yoon, J. H., Kim, B. M.: The convergence theorems for ap-integral. J. Chung. Math. Soc. 12 (1999), 113-118.
[19] Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H.: The ap-Denjoy and ap-Henstock integrals. Czech. Math. J. 57 (2007), 689-696. DOI 10.1007/s10587-007-0106-0 | MR 2337623 | Zbl 1174.26308
[20] Perron, O.: Über den Integralbegriff. Heidelb. Ak. Sitzungsber. 16 (1914), 1-16 German \99999JFM99999 45.0445.01.
[21] Shin, K. C., Yoon, J. H.: Properties for AP-Henstock integral. Available at {\let \relax \brokenlink{ https://www.researchgate.net/publication/349409139_PROPERTIES_FOR_THE_AP_}{-HENSTOCK_INTEGRAL}} (2021).
[22] Skvortsov, V. A., Sworowska, T., Sworowski, P.: On approximately continuous integrals (a survey). Traditional and Present-Day Topics in Real Analysis {Ł}odź University Press, {Ł}odź (2013), 233-252. MR 3204590 | Zbl 1334.26012
[23] Skvortsov, V. A., Sworowski, P.: The AP-Denjoy and AP-Henstock integrals revisited. Czech. Math. J. 62 (2012), 581-591. DOI 10.1007/s10587-012-0050-5 | MR 2984620 | Zbl 1265.26019
[24] Soedijono, B., Lee, P. Y., Chew, T. S.: The Kubota Integral and Beyond. NUS Research Report 389. National University of Singapur, Singapur (1989). MR 1095739
[25] Wiener, N.: Generalized harmonic analysis. Acta Math. 55 (1930), 117-258 \99999JFM99999 56.0954.02. DOI 10.1007/BF02546511 | MR 1555316
Partner of
EuDML logo