[4] Cao, S. S.:
The Henstock integral for Banach-valued functions. Southeast Asian Bull. Math. 16 (1992), 35-40.
MR 1173605 |
Zbl 0749.28007
[5] Corrao, G.: An Henstock-Kurzweil Type Integral on a Measure Metric Space: Doctoral Thesis. Universita Degli Studi Di Palermo, Palermo (2013).
[7] Edwards, R. E.:
Functional Analysis: Theory and Applications. Holt Rinehart and Winston, New York (1965).
MR 0221256 |
Zbl 0182.16101
[11] Henstock, R.:
The General Theory of Integration. Oxford Mathematical Monographs. Clarendon Press, Oxford (1991).
MR 1134656 |
Zbl 0745.26006
[12] Kalita, H., Hazarika, B.:
A convergence theorem for $ap$-Henstock-Kurzweil integral and its relation to topology. Filomat 36 (2022), 6831-6839.
DOI 10.2298/FIL2220831K |
MR 4563043
[14] Lee, P. Y., Výborný, R.:
The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14. Cambridge University Press, Cambridge (2000).
MR 1756319 |
Zbl 0941.26003
[18] Park, J. M., Lee, D. H., Yoon, J. H., Kim, B. M.: The convergence theorems for ap-integral. J. Chung. Math. Soc. 12 (1999), 113-118.
[20] Perron, O.: Über den Integralbegriff. Heidelb. Ak. Sitzungsber. 16 (1914), 1-16 German \99999JFM99999 45.0445.01.
[22] Skvortsov, V. A., Sworowska, T., Sworowski, P.:
On approximately continuous integrals (a survey). Traditional and Present-Day Topics in Real Analysis {Ł}odź University Press, {Ł}odź (2013), 233-252.
MR 3204590 |
Zbl 1334.26012
[24] Soedijono, B., Lee, P. Y., Chew, T. S.:
The Kubota Integral and Beyond. NUS Research Report 389. National University of Singapur, Singapur (1989).
MR 1095739