[2] Andres, J., Bersani, A. M., Grande, R. F.:
Hierarchy of almost-periodic function spaces. Rend. Mat. Appl., VII. Ser. 26 (2006), 121-188.
MR 2275292 |
Zbl 1133.42002
[4] Borkowski, M., Bugajewska, D., Kasprzak, P.:
Selected Topics in Nonlinear Analysis. Lecture Notes in Nonlinear Analysis 19. Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, Toruń (2021).
MR 4404311 |
Zbl 1506.47001
[6] Bugajewski, D.:
On the structure of solution sets of differential and integral equations, and the Perron integral. Proceedings of the Prague Mathematical Conference 1996 Icaris, Prague (1996), 47-51.
MR 1703455 |
Zbl 0966.34041
[7] Bugajewski, D.:
On the Volterra integral equation and the Henstock-Kurzweil integral. Math. Pannonica 9 (1998), 141-145.
MR 1620430 |
Zbl 0906.45005
[9] Bugajewski, D., Nawrocki, A.:
Some remarks on almost periodic functions in view of the Lebesgue measure with applications to linear differential equations. Ann. Acad. Sci. Fenn., Math. 42 (2017), 809-836.
DOI 10.5186/aasfm.2017.4250 |
MR 3701650 |
Zbl 1372.42003
[10] Bugajewski, D., Szufla, S.:
On the Aronszajn property for differential equations and the Denjoy integral. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25 (1995), 61-69.
MR 1384852 |
Zbl 0854.34005
[14] Horváth, J.:
Topological Vector Spaces and Distributions. Vol. I. Addison-Wesley, Reading (1966).
MR 0205028 |
Zbl 0143.15101
[17] Kurzweil, J.:
Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012).
DOI 10.1142/7907 |
MR 2906899 |
Zbl 1248.34001
[18] Meyer, Y.:
Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling. Afr. Diaspora J. Math. 13 (2012), 1-45.
MR 2876415 |
Zbl 1242.52026
[20] Pych-Taberska, P.:
Approximation of almost periodic functions integrable in the Denjoy-Perron sense. Function Spaces Teubner-Texte zur Mathematik 120. B. G. Teubner, Stuttgart (1991), 186-196.
MR 1155174 |
Zbl 0757.41029
[21] Pych-Taberska, P.:
On some almost periodic convolutions. Funct. Approximatio, Comment. Math. 20 (1992), 65-77.
MR 1201717 |
Zbl 0848.42009
[22] Saks, S.:
Theory of the Integral. Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937).
MR 0167578 |
Zbl 0017.30004
[24] Stoiński, S.:
Almost periodic function in the Lebesgue measure. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 34 (1994), 189-198.
MR 1325086 |
Zbl 0835.42009
[25] Stoiński, S.: Almost Periodic Functions. Scientific Publisher AMU, Poznań (2008), Polish.