Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
almost periodic function in view of the Lebesgue measure; barrelled space; Bohr almost periodic function; Denjoy-Bochner almost periodic function; Denjoy-Perron integral; Henstock-Kurzweil integral; linear differential equation
Summary:
We investigate some properties of the normed space of almost periodic functions which are defined via the Denjoy-Perron (or equivalently, Henstock-Kurzweil) integral. In particular, we prove that this space is barrelled while it is not complete. We also prove that a linear differential equation with the non-homogenous term being an almost periodic function of such type, possesses a solution in the class under consideration.
References:
[1] Alexiewicz, A.: Linear functionals on Denjoy-integrable functions. Colloq. Math. 1 (1948), 289-293. DOI 10.4064/cm-1-4-289-293 | MR 0030120 | Zbl 0037.32302
[2] Andres, J., Bersani, A. M., Grande, R. F.: Hierarchy of almost-periodic function spaces. Rend. Mat. Appl., VII. Ser. 26 (2006), 121-188. MR 2275292 | Zbl 1133.42002
[3] Borkowski, M., Bugajewska, D.: Applications of Henstock-Kurzweil integrals on an unbounded interval to differential and integral equations. Math. Slovaca 68 (2018), 77-88. DOI 10.1515/ms-2017-0082 | MR 3764318 | Zbl 1473.45008
[4] Borkowski, M., Bugajewska, D., Kasprzak, P.: Selected Topics in Nonlinear Analysis. Lecture Notes in Nonlinear Analysis 19. Nicolaus Copernicus University, Juliusz Schauder Center for Nonlinear Studies, Toruń (2021). MR 4404311 | Zbl 1506.47001
[5] Bruno, G., Pankov, A.: On convolution operators in the spaces of almost periodic functions and $L^p$ spaces. Z. Anal. Anwend. 19 (2000), 359-367. DOI 10.4171/ZAA/955 | MR 1768997 | Zbl 0972.47036
[6] Bugajewski, D.: On the structure of solution sets of differential and integral equations, and the Perron integral. Proceedings of the Prague Mathematical Conference 1996 Icaris, Prague (1996), 47-51. MR 1703455 | Zbl 0966.34041
[7] Bugajewski, D.: On the Volterra integral equation and the Henstock-Kurzweil integral. Math. Pannonica 9 (1998), 141-145. MR 1620430 | Zbl 0906.45005
[8] Bugajewski, D., Kasprzak, K., Nawrocki, A.: Asymptotic properties and convolutions of some almost periodic functions with applications. Ann. Mat. Pura Appl. (4) 202 (2023), 1033-1050. DOI 10.1007/s10231-022-01270-2 | MR 4576930 | Zbl 1512.42008
[9] Bugajewski, D., Nawrocki, A.: Some remarks on almost periodic functions in view of the Lebesgue measure with applications to linear differential equations. Ann. Acad. Sci. Fenn., Math. 42 (2017), 809-836. DOI 10.5186/aasfm.2017.4250 | MR 3701650 | Zbl 1372.42003
[10] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 25 (1995), 61-69. MR 1384852 | Zbl 0854.34005
[11] Burkill, H.: Almost periodicity and non-absolutely integrable functions. Proc. Lond. Math. Soc., II. Ser. 53 (1951), 32-42. DOI 10.1112/plms/s2-53.1.32 | MR 0043251 | Zbl 0042.31901
[12] Chew, T. S., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals. Differ. Integral Equ. 4 (1991), 861-868. DOI 10.57262/die/1371225020 | MR 1108065 | Zbl 0733.34004
[13] Henstock, R.: Definitions of Riemann type of the variational integral. Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. DOI 10.1112/plms/s3-11.1.402 | MR 0132147 | Zbl 0099.27402
[14] Horváth, J.: Topological Vector Spaces and Distributions. Vol. I. Addison-Wesley, Reading (1966). MR 0205028 | Zbl 0143.15101
[15] Kasprzak, P., Nawrocki, A., Signerska-Rynkowska, J.: Integrate-and-fire models an almost periodic input function. J. Differ. Equations 264 (2018), 2495-2537. DOI 10.1016/j.jde.2017.10.025 | MR 3737845 | Zbl 1380.42006
[16] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. DOI 10.21136/CMJ.1957.100258 | MR 0111875 | Zbl 0090.30002
[17] Kurzweil, J.: Generalized Ordinary Differential Equations: Not Absolutely Continuous Solutions. Series in Real Analysis 11. World Scientific, Hackensack (2012). DOI 10.1142/7907 | MR 2906899 | Zbl 1248.34001
[18] Meyer, Y.: Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling. Afr. Diaspora J. Math. 13 (2012), 1-45. MR 2876415 | Zbl 1242.52026
[19] Pal, B. K., Mukhopadhyay, S. N.: Denjoy-Bochner almost periodic functions. J. Aust. Math. Soc., Ser. A 37 (1984), 205-222. DOI 10.1017/S1446788700022047 | MR 0749501 | Zbl 0552.42005
[20] Pych-Taberska, P.: Approximation of almost periodic functions integrable in the Denjoy-Perron sense. Function Spaces Teubner-Texte zur Mathematik 120. B. G. Teubner, Stuttgart (1991), 186-196. MR 1155174 | Zbl 0757.41029
[21] Pych-Taberska, P.: On some almost periodic convolutions. Funct. Approximatio, Comment. Math. 20 (1992), 65-77. MR 1201717 | Zbl 0848.42009
[22] Saks, S.: Theory of the Integral. Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). MR 0167578 | Zbl 0017.30004
[23] Schwabik, Š.: The Perron integral in ordinary differential equations. Differ. Integral Equ. 6 (1993), 863-882. DOI 10.57262/die/1370032239 | MR 1222306 | Zbl 0784.34006
[24] Stoiński, S.: Almost periodic function in the Lebesgue measure. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 34 (1994), 189-198. MR 1325086 | Zbl 0835.42009
[25] Stoiński, S.: Almost Periodic Functions. Scientific Publisher AMU, Poznań (2008), Polish.
[26] Swartz, C.: Introduction to Gauge Integrals. World Scientific, Singapore (2001). DOI 10.1142/4361 | MR 1845270 | Zbl 0982.26006
Partner of
EuDML logo