Previous |  Up |  Next

Article

Keywords:
recursive kernel estimator; density; almost complete convergence; censored indepented data; right censored data; rate of convergence
Summary:
In this paper, we firstly introduce a recursive kernel estimator of the density in the censored data case. Then, we establish its pointwise and uniform almost complete convergences, with rates, in both complete and censored independent data. Finally, we illustrate the accuracy of the proposed estimators throughout a simulation study.
References:
[1] Amiri, A.: Rates of almost sure convergence of families of recursive kernel estimators. Ann. Inst. Stat. Univ. Paris LIV 3 (2010), 3-24. MR 2858150
[2] Amiri, A., Machkouri, M. El: Recursive kernel density estimation for time series. IEEE Trans. 66, Issue: 10 (2020) 6378-6388. DOI  | MR 4173545
[3] Bitouzé, D., Laurent, B., Massart, P.: A dvoretzky-kiefer-wolfowitz type inequality for the Kaplan-Meier estimator. Ann. Inst. Henri Poincaré - Probab. Stat. 35 (1999), 735-63. DOI 10.1016/S0246-0203(99)00112-0 | MR 1725709
[4] Chen, Y. C.: A tutorial on kernel density estimation and recent advances. Biostatist. Epidemiol. 1 (2017), 1, 161-187. DOI 
[5] Deheuvels, P.: Sur l'estimation séquentielle de la densité. C. R. Acad. Sci. Paris Sér. A 276, (1973), 1119-1121. MR 0334393
[6] Devroye, L. P., Wagner, T. J.: The strong uniform consistency of kernel density estimates in multivariate analysis - V. North-Holland Publishing Company 1980, pp. 59-77. MR 0566330
[7] Guessoum, Z., Ould-Said, E.: On nonparametric estimation of the regression function under random censorship model. Stat. Decisions 26 (2008), 3, 159-177. DOI  | MR 2512266
[8] Kaplan, E. M., Meier, P.: Nonparametric estimation from incomplete observations. J. Amer. Stat. Assoc. 53 (1958), 282, 457-481. DOI  | MR 0093867 | Zbl 0089.14801
[9] Khardani, S., Semmar, S.: Nonparametric conditional density estimation for censored data based on a recursive kernel. Electron. J. Stat. 8 (2014), 2541-2556. DOI  | MR 3285875
[10] Khardani, S., Slaoui, Y.: Adaptive recursive kernel conditional density estimators under censoring data. ALEA - Latin Amer. J. Probab. Math. Stat. 17 (2020), 389-417. DOI  | MR 4105924
[11] Kitouni, A., Boukeloua, M., Messaci, F.: Rate of strong consistency for nonparametric estimators based on twice censored data. Stat. Probab. Lett. 96 (2015) , 255-261. DOI  | MR 3281773
[12] Mezhoud, K. A., Mohdeb, Z., Louhichi, S.: Recursive kernel estimation of the density under $\eta$-weak dependence. J. Korean Stat. Soc. 33 (2014), 1065-1076. DOI  | MR 3233079
[13] Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962), 1065-1076. DOI  | MR 0143282 | Zbl 0116.11302
[14] Tran, L. T.: Recursive density estimation under dependence. IEEE Trans. Inform. Theory 35 (1989), 5, 1103-1108. DOI  | MR 1023252
[15] Wegman, E. J., Davies, H. I.: Remarks on some recursive estimators of a probability density. Ann. Stat. 7 (1979), 2, 316-327. DOI  | MR 0520242
[16] Wolverton, C., Wagner, T. J.: Recursive estimates of probability densities. IEEE Trans. 5 (1969), 307-308. DOI 
[17] Hoeffding, W.: Probability inequalities for sums of bounded random variables. In: The Collected Works of Wassily Hoeffding, Springer 1994, pp. 409-426. MR 1307621
Partner of
EuDML logo