Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
element order; conjugacy class; prime graph; projective special unitary group
Summary:
Projective special unitary groups ${\rm PSU}(5,q)$, where $$ \frac{q^4-q^3+q^2-q+1}{(5,q+1)} $$ is a prime, is uniquely determined by its order and the size of one conjugacy class.
References:
[1] Amiri S. S. S., Asboei A. K.: Characterization of some finite groups by their order and by the length of a conjugacy class. Sibirsk. Mat. Zh. 57 (2016), no. 2, 241–246 (in Russian); translation in Sib. Math. J. 57 (2016), no. 2, 185–189. MR 3510189
[2] Asboei A. K.: Characterization of PSL$(5,q)$ by its order and one conjugacy class size. Iran. J. of Math. Sci. Inform. 15 (2020), no. 1, 35–40. MR 4108746
[3] Asboei A. K., Darafsheh M. R., Mohammadyari R.: The influence of order and conjugacy class length on the structure of finite groups. Hokkaido Math. J. 47 (2018), no. 1, 25–32. DOI 10.14492/hokmj/1520928059 | MR 3773724
[4] Asboei A. K., Mohammadyari R.: Characterization of the alternating groups by their order and one conjugacy class length. Czechoslovak Math. J. 66(141) (2016), no. 1, 63–70. DOI 10.1007/s10587-016-0239-0 | MR 3483222
[5] Asboei A. K., Mohammadyari R.: Recognizing alternating groups by their order and one conjugacy class length. J. Algebra. Appl. 15 (2016), no. 2, 1650021, 7 pages. MR 3405720
[6] Asboei A. K., Mohammadyari R., Rahimi-Esbo M.: New characterization of some linear groups. Int. J. Industrial Mathematics 8 (2016), no. 2, Article ID IJIM-00714, 6 pages.
[7] Chen G. Y.: On Frobenius and $2$-Frobenius group. J. Southwest China Norm. Univ. 20 (1995), no. 5, 485–487 (Chinese).
[8] Chen Y., Chen G.: Recognizing $L_2(p)$ by its order and one special conjugacy class size. J. Inequal. Appl. 2012 (2012), 2012:310, 10 pages. MR 3027693
[9] Chen Y., Chen G.: Recognition of $A_{10}$ and $L_4(4)$ by two special conjugacy class sizes. Ital. J. Pure Appl. Math. 29 (2012), 387–394. MR 3009613
[10] Darafsheh M. R.: Characterizability of the group $^3D_p(3)$ by its order components, where $ p \ge 5$ is a prime number not of the form $2^m + 1$. Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 7, 1117–1126. DOI 10.1007/s10114-007-6143-7 | MR 2420882
[11] Gorenstein D.: Finite Groups. Chelsea Publishing Co., New York, 1980. MR 0569209 | Zbl 0695.20014
[12] Iranmanesh A., Alavi S. H.: A characterization of simple group $PSL(5, q)$. Bull. Austral. Math. Soc. 65 (2002), 211–222. DOI 10.1017/S0004972700020256 | MR 1898535
[13] Kantor W. M., Seress Á.: Large element orders and the characteristic of Lie-type simple groups. J. Algebra 322 (2009), no. 3, 802–832. DOI 10.1016/j.jalgebra.2009.05.004 | MR 2531224
[14] Mazurov V. D., Khukhro E. I.: Unsolved Problems in Group Theory, The Kourovka Notebook. 16 ed., Inst. Mat. Sibirsk. Otdel. Akad., Novosibirsk, 2006. MR 2263886
[15] Wall E. G.: On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Aust. Math. Soc. 3 (1963), no. 1, 1–62. DOI 10.1017/S1446788700027622 | MR 0150210
[16] Williams J. S.: Prime graph components of finite groups. J. Algebra 69 (1981), no. 2, 487–513. DOI 10.1016/0021-8693(81)90218-0 | MR 0617092 | Zbl 0471.20013
[17] Zavarnitsine A. V.: Recognition of the simple groups $L_3(q)$ by element orders. J. Group Theory 7 (2004), no. 1, 81–97. MR 2030231
Partner of
EuDML logo