[4] Chen, G., Perepelitsa, M.:
Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Commun. Pure Appl. Math. 63 (2010), 1469-1504.
DOI 10.1002/cpa.20332 |
MR 2683391 |
Zbl 1205.35188
[10] Huang, F., Li, M., Wang, Y.:
Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal. 44 (2012), 1742-1759.
DOI 10.1137/100814305 |
MR 2982730 |
Zbl 1247.35093
[12] Huang, F., Wang, Y., Yang, T.:
Fluid dynamic limit to the Riemann solutions of Euler equations. I. Superposition of rarefaction waves and contact discontinuity. Kinet. Relat. Models 3 (2010), 685-728.
DOI 10.3934/krm.2010.3.685 |
MR 2735911 |
Zbl 1209.35098
[14] Jiang, S., Ni, G., Sun, W.:
Vanishing viscosity limit to rarefaction waves for the Navier- Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J. Math. Anal. 38 (2006), 368-384.
DOI 10.1137/050626478 |
MR 2237152 |
Zbl 1107.76063
[18] Jiu, Q., Wang, Y., Xin, Z.:
Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity. SIAM J. Math. Anal. 45 (2013), 3194-3228.
DOI 10.1137/120879919 |
MR 3116645 |
Zbl 1293.35170
[21] Lions, P.-L.:
Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models. Oxford Lecture Series in Mathematics and its Applications 10. Clarendon Press, New York (1998).
MR 1637634 |
Zbl 0908.76004
[25] Matsumura, A., Nishida, T.:
The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad., Ser. A 55 (1979), 337-342.
DOI 10.3792/pjaa.55.337 |
MR 0555060 |
Zbl 0447.76053
[28] Okada, M., Matušů-Nečasová, Š., Makino, T.:
Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann. Univ. Ferrara, Nuova Ser., Sez. VII 48 (2002), 1-20.
DOI 10.1007/BF02824736 |
MR 1980822 |
Zbl 1027.76042
[29] Serre, D.:
Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C. R. Acad. Sci., Paris, Sér. I 303 (1986), 639-642 French.
MR 0867555 |
Zbl 0597.76067
[38] Zhang, Y., Pan, R., Tan, Z.:
Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations. Sci. China, Math. 56 (2013), 2205-2232.
DOI 10.1007/s11425-013-4690-1 |
MR 3123567 |
Zbl 1292.35247