Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Lüroth expansion; exceptional set; Borel-Bernstein theorem; Hausdorff dimension
Summary:
We study the metrical theory of the growth rate of digits in Lüroth expansions. More precisely, for $ x\in ( 0,1 ]$, let $[ d_1( x ) ,d_2 ( x) ,\cdots ]$ denote the Lüroth expansion of $x$. We completely determine the Hausdorff dimension of the sets $$ \begin{aligned} E_{\sup } ( \psi ) = & \biggl \{ x\in ( 0,1 ] \colon \limsup _{n\rightarrow \infty } \frac {\log d_n ( x)}{\psi ( n )}=1 \biggr \} ,\\ E ( \psi ) = & \biggl \{ x\in ( 0,1 ] \colon \lim _{n\rightarrow \infty } \frac {\log d_n ( x)}{\psi ( n )}=1 \biggr \} \end{aligned} $$ and $$ E_{\inf } (\psi ) =\biggl \{ x\in ( 0,1 ] \colon \liminf _{n\rightarrow \infty } \frac {\log d_n ( x )}{\psi ( n)}=1 \biggr \} , $$ where $ \psi \colon \mathbb {N} \rightarrow \mathbb {R} ^+ $ is an arbitrary function satisfying $ \psi ( n ) \rightarrow \infty $ as $n\rightarrow \infty $.
References:
[1] Arroyo, A., Robert, G. González: Hausdorff dimension of sets of numbers with large Lüroth elements. Integers 21 (2021), Article ID a71, 20 pages. MR 4284749 | Zbl 1469.11250
[2] Barreira, L., Iommi, G.: Frequency of digits in the Lüroth expansion. J. Number Theory 129 (2009), 1479-1490. DOI 10.1016/j.jnt.2008.06.002 | MR 2521488 | Zbl 1188.37024
[3] Cao, C., Wu, J., Zhang, Z.: The efficiency of approximating real numbers by Lüroth expansion. Czech. Math. J. 63 (2013), 497-513. DOI 10.1007/s10587-013-0033-1 | MR 3073974 | Zbl 1289.11045
[4] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Chichester (2014). DOI 10.1002/0470013850 | MR 3236784 | Zbl 1285.28011
[5] Fan, A., Liao, L., Ma, J., Wang, B.: Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity 23 (2010), 1185-1197. DOI 10.1088/0951-7715/23/5/009 | MR 2630097 | Zbl 1247.11104
[6] Fang, L., Ma, J., Song, K.: Some exceptional sets of Borel-Bernstein theorem in continued fractions. Ramanujan J. 56 (2021), 891-909. DOI 10.1007/s11139-020-00320-8 | MR 4341100 | Zbl 1481.11078
[7] Galambos, J.: Representations of Real Numbers by Infinite Series. Lecture Notes in Mathematics 502. Springer, Berlin (1976). DOI 10.1007/BFb0081642 | MR 568141 | Zbl 0322.10002
[8] Lüroth, J.: Ueber eine eindeutige Entwickelung von Zahlen in eine unendliche Reihe. Math. Ann. 21 (1883), 411-423 German \99999JFM99999 15.0187.01. DOI 10.1007/BF01443883 | MR 1510205
[9] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech. Math. J. 18 (1968), 489-522 German. DOI 10.21136/CMJ.1968.100848 | MR 229605 | Zbl 0162.34703
[10] Shen, L.: Hausdorff dimension of the set concerning with Borel-Bernstein theory in Lüroth expansions. J. Korean Math. Soc. 54 (2017), 1301-1316. DOI 10.4134/JKMS.j160501 | MR 3668870 | Zbl 1368.41002
[11] Shen, L., Fang, K.: The fractional dimensional theory in Lüroth expansion. Czech. Math. J. 61 (2011), 795-807. DOI 10.1007/s10587-011-0028-8 | MR 2853093 | Zbl 1249.11084
[12] Sun, Y., Xu, J.: On the maximal run-length function in the Lüroth expansion. Czech. Math. J. 68 (2018), 277-291. DOI 10.21136/CMJ.2018.0474-16 | MR 3783599 | Zbl 1458.11125
[13] Tan, B., Zhou, Q.: Dimension theory of the product of partial quotients in Lüroth expansions. Int. J. Number Theory 17 (2021), 1139-1154. DOI 10.1142/S1793042121500287 | MR 4270877 | Zbl 1469.11256
Partner of
EuDML logo