Previous |  Up |  Next

Article

Title: On general Dedekind sums (English)
Author: Wang, Nianliang
Author: Kanemitsu, Shigeru
Author: Tanigawa, Yoshio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 485-518
Summary lang: English
.
Category: math
.
Summary: As a far generalization of the Dedekind sum with the product of periodic Bernoulli polynomials, Mikolás introduced the Dedekind type sum $\mathcal {M}_c^{a,b}(w,z)$ with the product of the Hurwitz zeta-functions $\zeta (s,x)$, $0<x\le 1$. We adopt the motivation suggested by Mikolás that the Dedekind sum is a generalized inner product in the second variable. The Hurwitz zeta-function has a simple pole at $s=1$ and cannot assume the value $x=0$ while its counterpart, the Lerch zeta-function $\ell _s(x)=\ell (s,x)$, is more tractable and we study the Dedekind type sum $\mathcal {L}_c^{a,b}(w,z)$ with the product of the Lerch zeta-functions. We establish a striking identity between these Dedekind type sums to the effect that $\mathcal {M}_c^{a,b}(w,z)$ with a correction term is a constant multiple of $\mathcal {L}_c^{a,b}(w,z)$ -- the base change formula. This implies a new expression for the ordinary Dedekind sum in terms of the one with Apostol's generalized Bernoulli polynomial. In another direction, by letting the second variables vary independently with first variables fixed as $s. s+1$, we may elucidate the Hecke correspondence in the previous derivations of the general eta transformation formula. We can also establish many interesting properties of $\mathcal {L}_c^{a,b}$ which supplement those of $\mathcal {M}_c^{a,b}$. Moreover, we show that $\mathcal {L}_c^{1,b}$ also appears in the pseudo-transformation formula for non-modular functions. (English)
Keyword: Dedekind sum
Keyword: Hurwitz zeta-function
Keyword: Lerch zeta-function
Keyword: vector space structure
Keyword: generalized inner product
MSC: 11L07
MSC: 11L10
MSC: 11M35
MSC: 11M36
DOI: 10.21136/CMJ.2025.0177-24
.
Date available: 2025-05-20T11:45:20Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152954
.
Reference: [1] Apostol, T. M.: Generalized Dedekind sums and the transformation formulae of certain Lambert series.Duke Math. J. 17 (1950), 147-157. Zbl 0039.03801, MR 0034781, 10.1215/S0012-7094-50-01716-9
Reference: [2] Apostol, T. M.: On the Lerch zeta function.Pac. J. Math. 1 (1951), 161-167 \99999DOI99999 10.2140/pjm.1951.1.161 . Zbl 0043.07103, MR 0043843, 10.2140/pjm.1951.1.161
Reference: [3] Apostol, T. M.: Addendum to 'On the Lerch zeta function's'.Pac. J. Math. 2 (1952), 10. MR 0046378, 10.2140/pjm.1952.2.10
Reference: [4] Apostol, T. M.: A short proof of Shô Iseki's functional equation.Proc. Am. Math. Soc. 15 (1964), 618-622. Zbl 0163.29301, MR 0164942, 10.1090/S0002-9939-1964-0164942-5
Reference: [5] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory.Graduate Texts in Mathematics 41. Springer, New York (1976). Zbl 0332.10017, MR 0422157, 10.1007/978-1-4612-0999-7
Reference: [6] Asano, N.: Report on Multiple Zeta-Functions and Dedekind Sums: Masters Thesis.Nagoya University, Nagoya (2003).
Reference: [7] Chakraborty, K., Kanemitsu, S., Kuzumaki, T.: Seeing the invisible: Around generalized Kubert functions.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 185-195. MR 3849202
Reference: [8] Chakraborty, K., Kanemitsu, S., Kuzumaki, T.: Modular Relations and Parity in Number Theory.Infosys Science Foundation Series in Mathematical Sciences. Springer, Singapore (2025).
Reference: [9] Chapman, R.: Limit formulas for non-modular Eisenstein series.J. Comb. Number Theory 1 (2009), 127-132. Zbl 1242.11066, MR 2663649
Reference: [10] Dedekind, R.: Erläuterungen zu zwei Fragmenten von Riemann.Bernhard Riemanns gesammelte mathematische Werke und wissenschaftlichen Nachlass B. G. Teubner, Leipzig (1892), 466-478 German \99999JFM99999 24.0021.04. MR 0052364
Reference: [11] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. I.McGraw-Hill, New York (1953). Zbl 0051.30303, MR 0058756
Reference: [12] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. II.McGraw-Hill, New York (1953). Zbl 0052.29502, MR 0058756
Reference: [13] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. III.McGraw-Hill, New York (1955). Zbl 0064.06302, MR 0066496
Reference: [14] Espinosa, O., Moll, V. H.: On some integrals involving the Hurwitz zeta-function. I.Ramanujan J. 6 (2002), 159-188. Zbl 1019.33001, MR 1908196, 10.1023/A:1015706300169
Reference: [15] Espinosa, O., Moll, V. H.: On some integrals involving the Hurwitz zeta-function. II.Ramanujan J. 6 (2002), 449-468. Zbl 1156.11333, MR 2125010, 10.1023/A:1021171500736
Reference: [16] Estermann, T.: On the representation of a number as the sum of two products.Proc. Lond. Math. Soc. (2) 31 (1930), 123-133 \99999JFM99999 56.0174.02. MR 1577452, 10.1112/jlms/s1-5.2.131
Reference: [17] Goldstein, L. J., Torre, P. de la: On the transformation formula of log $\eta(\tau)$.Duke Math. J. 41 (1974), 291-297. Zbl 0285.10017, MR 0342471, 10.1215/S0012-7094-74-04132-5
Reference: [18] Hiramatsu, T., Mimura, Y., Takada, T.: Dedekind sums and transformation formulas.RIMS Kokyuroku 572 (1985), 151-175. Zbl 0639.10005, MR 0862858
Reference: [19] Iseki, S.: The transformation formula for the Dedekind modular function and related functional equations.Duke Math. J. 24 (1957), 653-662. Zbl 0093.25903, MR 0091301, 10.1215/S0012-7094-57-02473-0
Reference: [20] Iseki, S.: A proof of a functional equation related to the theory of partitions.Proc. Am. Math. Soc. 12 (1961), 502-505. Zbl 0107.26705, MR 0125098, 10.1090/S0002-9939-1961-0125098-5
Reference: [21] Ishibashi, M.: The value of the Estermann zeta functions at $s=0$.Acta Arith. 73 (1995), 357-361. Zbl 0845.11034, MR 1366040, 10.4064/aa-73-4-357-361
Reference: [22] Kanemitsu, S.: L'estro armonico del circolo di Euler-Gauss-Dirichlet-Riemann.J. Weinan Teachers Univ. Chinese 26 (2011), 3-22, 42. 10.15924/j.cnki.1009-5128.2011.10.001
Reference: [23] Kanemitsu, S., Kuzumaki, T.: Transformation formulas for Lambert series.Šiauliai Math. Semin. 4 (2009), 105-123. Zbl 1208.11062, MR 2530201
Reference: [24] Kanemitsu, S., Tsukada, H.: Vistas of Special Functions.World Scientific, Hackensack (2007). Zbl 1161.33001, MR 2352572, 10.1142/6489
Reference: [25] Kanemitsu, S., Tsukada, H.: Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy.Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2014). Zbl 1311.11003, MR 3329611, 10.1142/8711
Reference: [26] Knopp, M., Robins, S.: Easy proofs of Riemann's functional equation for $\zeta(s)$ and of Lipschitz summation.Proc. Am. Math. Soc. 129 (2001), 1915-1922. Zbl 0972.11083, MR 1825897, 10.1090/S0002-9939-01-06033-6
Reference: [27] Koyama, S.-Y., Kurokawa, N.: Multiple Eisenstein series and multiple cotangent functions.J. Number Theory 128 (2008), 1769-1774. Zbl 1168.11035, MR 2419192, 10.1016/j.jnt.2007.06.004
Reference: [28] Kurokawa, N.: Limit values of Eisenstein series and multiple cotangent functions.J. Number Theory 128 (2008), 1775-1783. Zbl 1168.11032, MR 2419193, 10.1016/j.jnt.2007.06.003
Reference: [29] Lang, S.: Cyclotomic Fields.Graduate Texts in Mathematics 69. Springer, Berlin (1978). Zbl 0395.12005, MR 0485768
Reference: [30] Lang, S.: Cyclotomic Fields. II.Graduate Texts in Mathematics 59. Springer, Berlin (1980). Zbl 0435.12001, MR 0566952
Reference: [31] Laurinčikas, A., Garunkštis, R.: The Lerch Zeta-Function.Kluwer Academic, Dordrecht (2002). Zbl 1028.11052, MR 1979048, 10.1007/978-94-017-6401-8
Reference: [32] Li, H.-L., Hashimoto, M., Kanemitsu, S.: Examples of the Hurwitz transform.J. Math. Soc. Japan 61 (2009), 651-660. Zbl 1231.11107, MR 2552911, 10.2969/jmsj/06130651
Reference: [33] Li, H., Kuzumaki, T., Kanemitsu, S.: On zeta-functions and allied theta-functions.Advances Number Theory World Scientific, Singapore (2023). MR 4619172, 10.1142/9789811272608_0004
Reference: [34] Li, H., Li, F., Wang, N., Kanemitsu, S.: Number Theory and Its Applications. II.World Scientific, Hackensack (2018). Zbl 1440.11002, MR 3753614, 10.1142/10753
Reference: [35] Li, H., Ma, J., Uramatsu, Y.: Multiplication formulas for Kubert functions.Front. Math. China 9 (2014), 101-109. Zbl 1331.11002, MR 3146558, 10.1007/s11464-013-0348-0
Reference: [36] Li, W., Li, H., Mehta, J.: Around the Lipschitz summation formula.Math. Probl. Eng. 2020 (2020), Article ID 5762823, 16 pages. Zbl 1544.11066, MR 4093324, 10.1155/2020/5762823
Reference: [37] Maier, H.: Cyclotomic polynomials whose orders contain many prime factors.Period. Math. Hung. 43 (2001), 155-164. Zbl 1062.11061, MR 1830573, 10.1023/A:1015293917813
Reference: [38] Meyer, C.: Über einige Anwendungen Dedekindscher Summen.J. Reine Angew. Math. 198 (1957), 143-203 German. Zbl 0079.10303, MR 0104643, 10.1515/crll.1957.198.143
Reference: [39] Mikolás, M.: Mellinsche Transformation und Orthogonalität bei $\zeta(s,u)$: Verallgemeinerung der Riemannschen Funktionalgleichung von $\zeta(s)$.Acta Sci. Math. 17 (1956), 143-164 German. Zbl 0073.06403, MR 0089864
Reference: [40] Mikolás, M.: On certain sums generating the Dedekind sums and their reciprocity laws.Pac. J. Math. 7 (1957), 1167-1178. Zbl 0081.04302, MR 0091303, 10.2140/pjm.1957.7.1167
Reference: [41] Mikolás, M.: Über gewisse Lambertsche Reihen. I: Verallgemeinerung der Modulfunktionen $\eta(\tau)$ und ihrer Dedekindschen Transformationsformel.Math. Z. 68 (1957), 100-110 German. Zbl 0078.07003, MR 0091302, 10.1007/BF01160334
Reference: [42] Milnor, J.: On polylogarithms, Hurwitz zeta-functions, and the Kubert identities.Enseign. Math., II. Sér. 29 (1983), 281-322. Zbl 0557.10031, MR 0719313
Reference: [43] Rademacher, H.: Zur Theorie der Modulfunktionen.J. Reine Angew. Math. 167 (1932), 312-336 German. Zbl 0003.21501, MR 1581344, 10.1515/crll.1932.167.312
Reference: [44] Rademacher, H.: Topics in Analytic Number Theory.Die Grundlehren der mathematischen Wissenschaften 169. Springer, Berlin (1973). Zbl 0253.10002, MR 0364103, 10.1007/978-3-642-80615-5
Reference: [45] Rademacher, H., Grosswald, E.: Dedekind Sums.The Carus Mathematical Monographs 16. The Mathematical Association of America, New York (1972). Zbl 0251.10020, MR 0357299, 10.5948/UPO9781614440161
Reference: [46] Riemann, B.: The Collected Works of Bernhard Riemann.Dover, New York (1953). Zbl 1369.01040
Reference: [47] Serre, J.-P.: A Course in Arithmetic.Graduate Texts in Mathematics 7. Springer, New York (1973). Zbl 0256.12001, MR 0344216, 10.1007/978-1-4684-9884-4
Reference: [48] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions.Kluwer Academic, Dordrecht (2001). Zbl 1014.33001, MR 1849375, 10.1007/978-94-015-9672-5
Reference: [49] Stark, H. M.: Dirichlet's class number formula revisited.A Tribute to Emil Grosswald: Number Theory and Related Analysis Contemporary Mathematics 143. AMS, Providence (1993), 571-577. Zbl 0804.11060, MR 1210543, 10.1090/conm/143
Reference: [50] Titchmarsh, E. C.: On a series of Lambert's type.J. Lond. Math. Soc. 13 (1938), 248-252. Zbl 0021.01102, MR 1574972, 10.1112/jlms/s1-13.4.248
Reference: [51] Walum, H.: Multiplication formulae for periodic functions.Pac. J. Math. 149 (1991), 383-396. Zbl 0736.11012, MR 1105705, 10.2140/pjm.1991.149.383
Reference: [52] Weil, A.: Sur une formule classique.J. Math. Soc. Japan 20 (1968), 400-402 French. Zbl 0174.33902, MR 0224556, 10.2969/jmsj/02010400
Reference: [53] Yamamoto, Y.: Dirichlet series with periodic coefficients.Algebraic Number Theory Japan Society for the Promotion of Science, Tokyo (1977), 275-289. Zbl 0371.10028, MR 0450213
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo