Title: | On general Dedekind sums (English) |
Author: | Wang, Nianliang |
Author: | Kanemitsu, Shigeru |
Author: | Tanigawa, Yoshio |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 75 |
Issue: | 2 |
Year: | 2025 |
Pages: | 485-518 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | As a far generalization of the Dedekind sum with the product of periodic Bernoulli polynomials, Mikolás introduced the Dedekind type sum $\mathcal {M}_c^{a,b}(w,z)$ with the product of the Hurwitz zeta-functions $\zeta (s,x)$, $0<x\le 1$. We adopt the motivation suggested by Mikolás that the Dedekind sum is a generalized inner product in the second variable. The Hurwitz zeta-function has a simple pole at $s=1$ and cannot assume the value $x=0$ while its counterpart, the Lerch zeta-function $\ell _s(x)=\ell (s,x)$, is more tractable and we study the Dedekind type sum $\mathcal {L}_c^{a,b}(w,z)$ with the product of the Lerch zeta-functions. We establish a striking identity between these Dedekind type sums to the effect that $\mathcal {M}_c^{a,b}(w,z)$ with a correction term is a constant multiple of $\mathcal {L}_c^{a,b}(w,z)$ -- the base change formula. This implies a new expression for the ordinary Dedekind sum in terms of the one with Apostol's generalized Bernoulli polynomial. In another direction, by letting the second variables vary independently with first variables fixed as $s. s+1$, we may elucidate the Hecke correspondence in the previous derivations of the general eta transformation formula. We can also establish many interesting properties of $\mathcal {L}_c^{a,b}$ which supplement those of $\mathcal {M}_c^{a,b}$. Moreover, we show that $\mathcal {L}_c^{1,b}$ also appears in the pseudo-transformation formula for non-modular functions. (English) |
Keyword: | Dedekind sum |
Keyword: | Hurwitz zeta-function |
Keyword: | Lerch zeta-function |
Keyword: | vector space structure |
Keyword: | generalized inner product |
MSC: | 11L07 |
MSC: | 11L10 |
MSC: | 11M35 |
MSC: | 11M36 |
DOI: | 10.21136/CMJ.2025.0177-24 |
. | |
Date available: | 2025-05-20T11:45:20Z |
Last updated: | 2025-05-26 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152954 |
. | |
Reference: | [1] Apostol, T. M.: Generalized Dedekind sums and the transformation formulae of certain Lambert series.Duke Math. J. 17 (1950), 147-157. Zbl 0039.03801, MR 0034781, 10.1215/S0012-7094-50-01716-9 |
Reference: | [2] Apostol, T. M.: On the Lerch zeta function.Pac. J. Math. 1 (1951), 161-167 \99999DOI99999 10.2140/pjm.1951.1.161 . Zbl 0043.07103, MR 0043843, 10.2140/pjm.1951.1.161 |
Reference: | [3] Apostol, T. M.: Addendum to 'On the Lerch zeta function's'.Pac. J. Math. 2 (1952), 10. MR 0046378, 10.2140/pjm.1952.2.10 |
Reference: | [4] Apostol, T. M.: A short proof of Shô Iseki's functional equation.Proc. Am. Math. Soc. 15 (1964), 618-622. Zbl 0163.29301, MR 0164942, 10.1090/S0002-9939-1964-0164942-5 |
Reference: | [5] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory.Graduate Texts in Mathematics 41. Springer, New York (1976). Zbl 0332.10017, MR 0422157, 10.1007/978-1-4612-0999-7 |
Reference: | [6] Asano, N.: Report on Multiple Zeta-Functions and Dedekind Sums: Masters Thesis.Nagoya University, Nagoya (2003). |
Reference: | [7] Chakraborty, K., Kanemitsu, S., Kuzumaki, T.: Seeing the invisible: Around generalized Kubert functions.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 185-195. MR 3849202 |
Reference: | [8] Chakraborty, K., Kanemitsu, S., Kuzumaki, T.: Modular Relations and Parity in Number Theory.Infosys Science Foundation Series in Mathematical Sciences. Springer, Singapore (2025). |
Reference: | [9] Chapman, R.: Limit formulas for non-modular Eisenstein series.J. Comb. Number Theory 1 (2009), 127-132. Zbl 1242.11066, MR 2663649 |
Reference: | [10] Dedekind, R.: Erläuterungen zu zwei Fragmenten von Riemann.Bernhard Riemanns gesammelte mathematische Werke und wissenschaftlichen Nachlass B. G. Teubner, Leipzig (1892), 466-478 German \99999JFM99999 24.0021.04. MR 0052364 |
Reference: | [11] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. I.McGraw-Hill, New York (1953). Zbl 0051.30303, MR 0058756 |
Reference: | [12] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. II.McGraw-Hill, New York (1953). Zbl 0052.29502, MR 0058756 |
Reference: | [13] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. III.McGraw-Hill, New York (1955). Zbl 0064.06302, MR 0066496 |
Reference: | [14] Espinosa, O., Moll, V. H.: On some integrals involving the Hurwitz zeta-function. I.Ramanujan J. 6 (2002), 159-188. Zbl 1019.33001, MR 1908196, 10.1023/A:1015706300169 |
Reference: | [15] Espinosa, O., Moll, V. H.: On some integrals involving the Hurwitz zeta-function. II.Ramanujan J. 6 (2002), 449-468. Zbl 1156.11333, MR 2125010, 10.1023/A:1021171500736 |
Reference: | [16] Estermann, T.: On the representation of a number as the sum of two products.Proc. Lond. Math. Soc. (2) 31 (1930), 123-133 \99999JFM99999 56.0174.02. MR 1577452, 10.1112/jlms/s1-5.2.131 |
Reference: | [17] Goldstein, L. J., Torre, P. de la: On the transformation formula of log $\eta(\tau)$.Duke Math. J. 41 (1974), 291-297. Zbl 0285.10017, MR 0342471, 10.1215/S0012-7094-74-04132-5 |
Reference: | [18] Hiramatsu, T., Mimura, Y., Takada, T.: Dedekind sums and transformation formulas.RIMS Kokyuroku 572 (1985), 151-175. Zbl 0639.10005, MR 0862858 |
Reference: | [19] Iseki, S.: The transformation formula for the Dedekind modular function and related functional equations.Duke Math. J. 24 (1957), 653-662. Zbl 0093.25903, MR 0091301, 10.1215/S0012-7094-57-02473-0 |
Reference: | [20] Iseki, S.: A proof of a functional equation related to the theory of partitions.Proc. Am. Math. Soc. 12 (1961), 502-505. Zbl 0107.26705, MR 0125098, 10.1090/S0002-9939-1961-0125098-5 |
Reference: | [21] Ishibashi, M.: The value of the Estermann zeta functions at $s=0$.Acta Arith. 73 (1995), 357-361. Zbl 0845.11034, MR 1366040, 10.4064/aa-73-4-357-361 |
Reference: | [22] Kanemitsu, S.: L'estro armonico del circolo di Euler-Gauss-Dirichlet-Riemann.J. Weinan Teachers Univ. Chinese 26 (2011), 3-22, 42. 10.15924/j.cnki.1009-5128.2011.10.001 |
Reference: | [23] Kanemitsu, S., Kuzumaki, T.: Transformation formulas for Lambert series.Šiauliai Math. Semin. 4 (2009), 105-123. Zbl 1208.11062, MR 2530201 |
Reference: | [24] Kanemitsu, S., Tsukada, H.: Vistas of Special Functions.World Scientific, Hackensack (2007). Zbl 1161.33001, MR 2352572, 10.1142/6489 |
Reference: | [25] Kanemitsu, S., Tsukada, H.: Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy.Series on Number Theory and Its Applications 10. World Scientific, Hackensack (2014). Zbl 1311.11003, MR 3329611, 10.1142/8711 |
Reference: | [26] Knopp, M., Robins, S.: Easy proofs of Riemann's functional equation for $\zeta(s)$ and of Lipschitz summation.Proc. Am. Math. Soc. 129 (2001), 1915-1922. Zbl 0972.11083, MR 1825897, 10.1090/S0002-9939-01-06033-6 |
Reference: | [27] Koyama, S.-Y., Kurokawa, N.: Multiple Eisenstein series and multiple cotangent functions.J. Number Theory 128 (2008), 1769-1774. Zbl 1168.11035, MR 2419192, 10.1016/j.jnt.2007.06.004 |
Reference: | [28] Kurokawa, N.: Limit values of Eisenstein series and multiple cotangent functions.J. Number Theory 128 (2008), 1775-1783. Zbl 1168.11032, MR 2419193, 10.1016/j.jnt.2007.06.003 |
Reference: | [29] Lang, S.: Cyclotomic Fields.Graduate Texts in Mathematics 69. Springer, Berlin (1978). Zbl 0395.12005, MR 0485768 |
Reference: | [30] Lang, S.: Cyclotomic Fields. II.Graduate Texts in Mathematics 59. Springer, Berlin (1980). Zbl 0435.12001, MR 0566952 |
Reference: | [31] Laurinčikas, A., Garunkštis, R.: The Lerch Zeta-Function.Kluwer Academic, Dordrecht (2002). Zbl 1028.11052, MR 1979048, 10.1007/978-94-017-6401-8 |
Reference: | [32] Li, H.-L., Hashimoto, M., Kanemitsu, S.: Examples of the Hurwitz transform.J. Math. Soc. Japan 61 (2009), 651-660. Zbl 1231.11107, MR 2552911, 10.2969/jmsj/06130651 |
Reference: | [33] Li, H., Kuzumaki, T., Kanemitsu, S.: On zeta-functions and allied theta-functions.Advances Number Theory World Scientific, Singapore (2023). MR 4619172, 10.1142/9789811272608_0004 |
Reference: | [34] Li, H., Li, F., Wang, N., Kanemitsu, S.: Number Theory and Its Applications. II.World Scientific, Hackensack (2018). Zbl 1440.11002, MR 3753614, 10.1142/10753 |
Reference: | [35] Li, H., Ma, J., Uramatsu, Y.: Multiplication formulas for Kubert functions.Front. Math. China 9 (2014), 101-109. Zbl 1331.11002, MR 3146558, 10.1007/s11464-013-0348-0 |
Reference: | [36] Li, W., Li, H., Mehta, J.: Around the Lipschitz summation formula.Math. Probl. Eng. 2020 (2020), Article ID 5762823, 16 pages. Zbl 1544.11066, MR 4093324, 10.1155/2020/5762823 |
Reference: | [37] Maier, H.: Cyclotomic polynomials whose orders contain many prime factors.Period. Math. Hung. 43 (2001), 155-164. Zbl 1062.11061, MR 1830573, 10.1023/A:1015293917813 |
Reference: | [38] Meyer, C.: Über einige Anwendungen Dedekindscher Summen.J. Reine Angew. Math. 198 (1957), 143-203 German. Zbl 0079.10303, MR 0104643, 10.1515/crll.1957.198.143 |
Reference: | [39] Mikolás, M.: Mellinsche Transformation und Orthogonalität bei $\zeta(s,u)$: Verallgemeinerung der Riemannschen Funktionalgleichung von $\zeta(s)$.Acta Sci. Math. 17 (1956), 143-164 German. Zbl 0073.06403, MR 0089864 |
Reference: | [40] Mikolás, M.: On certain sums generating the Dedekind sums and their reciprocity laws.Pac. J. Math. 7 (1957), 1167-1178. Zbl 0081.04302, MR 0091303, 10.2140/pjm.1957.7.1167 |
Reference: | [41] Mikolás, M.: Über gewisse Lambertsche Reihen. I: Verallgemeinerung der Modulfunktionen $\eta(\tau)$ und ihrer Dedekindschen Transformationsformel.Math. Z. 68 (1957), 100-110 German. Zbl 0078.07003, MR 0091302, 10.1007/BF01160334 |
Reference: | [42] Milnor, J.: On polylogarithms, Hurwitz zeta-functions, and the Kubert identities.Enseign. Math., II. Sér. 29 (1983), 281-322. Zbl 0557.10031, MR 0719313 |
Reference: | [43] Rademacher, H.: Zur Theorie der Modulfunktionen.J. Reine Angew. Math. 167 (1932), 312-336 German. Zbl 0003.21501, MR 1581344, 10.1515/crll.1932.167.312 |
Reference: | [44] Rademacher, H.: Topics in Analytic Number Theory.Die Grundlehren der mathematischen Wissenschaften 169. Springer, Berlin (1973). Zbl 0253.10002, MR 0364103, 10.1007/978-3-642-80615-5 |
Reference: | [45] Rademacher, H., Grosswald, E.: Dedekind Sums.The Carus Mathematical Monographs 16. The Mathematical Association of America, New York (1972). Zbl 0251.10020, MR 0357299, 10.5948/UPO9781614440161 |
Reference: | [46] Riemann, B.: The Collected Works of Bernhard Riemann.Dover, New York (1953). Zbl 1369.01040 |
Reference: | [47] Serre, J.-P.: A Course in Arithmetic.Graduate Texts in Mathematics 7. Springer, New York (1973). Zbl 0256.12001, MR 0344216, 10.1007/978-1-4684-9884-4 |
Reference: | [48] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions.Kluwer Academic, Dordrecht (2001). Zbl 1014.33001, MR 1849375, 10.1007/978-94-015-9672-5 |
Reference: | [49] Stark, H. M.: Dirichlet's class number formula revisited.A Tribute to Emil Grosswald: Number Theory and Related Analysis Contemporary Mathematics 143. AMS, Providence (1993), 571-577. Zbl 0804.11060, MR 1210543, 10.1090/conm/143 |
Reference: | [50] Titchmarsh, E. C.: On a series of Lambert's type.J. Lond. Math. Soc. 13 (1938), 248-252. Zbl 0021.01102, MR 1574972, 10.1112/jlms/s1-13.4.248 |
Reference: | [51] Walum, H.: Multiplication formulae for periodic functions.Pac. J. Math. 149 (1991), 383-396. Zbl 0736.11012, MR 1105705, 10.2140/pjm.1991.149.383 |
Reference: | [52] Weil, A.: Sur une formule classique.J. Math. Soc. Japan 20 (1968), 400-402 French. Zbl 0174.33902, MR 0224556, 10.2969/jmsj/02010400 |
Reference: | [53] Yamamoto, Y.: Dirichlet series with periodic coefficients.Algebraic Number Theory Japan Society for the Promotion of Science, Tokyo (1977), 275-289. Zbl 0371.10028, MR 0450213 |
. |
Fulltext not available (moving wall 24 months)