Previous |  Up |  Next

Article

Title: The rings whose torsionfree modules have injective dimension at most one (English)
Author: Alagöz, Yusuf
Author: Türkoğlu, Zübeyir
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 533-548
Summary lang: English
.
Category: math
.
Summary: The domains with torsion-free modules of injective dimension at most one have been examined by B. Olberding. A TF-projective module is one that is projective relative to all short exact sequences beginning with torsion-free modules. The rings, where each right ideal of $S$ is TF-projective, are precisely those rings whose torsionfree right modules have injective dimension at most one. The goal of this study is to comprehend the structure of the rings that B. Olberding recently studied. Along the way, we prove for a domain $S$, that if each ideal of $S$ is TF-projective, then $S$ is a Noetherian ring with $\dim (S)\leq 1$. Specifically, we prove that for a commutative domain $S$, each ideal of $S$ is TF-projective if and only if $S$ is a Gorenstein Dedekind domain. A left $P$-coherent ring all of its TF-projective left $S$-modules are projective is precisely left PP ring. Furthermore, we demonstrate that any (cyclic) right $S$-module of $S$ is TF-projective if and only if $S$ is a QF-ring. (English)
Keyword: injective dimension
Keyword: torsionfree module
Keyword: TF-projective module
Keyword: TF-hereditary ring
MSC: 16D40
MSC: 16E10
MSC: 18G25
DOI: 10.21136/CMJ.2025.0204-24
.
Date available: 2025-05-20T11:46:17Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152956
.
Reference: [1] Bass, H.: Injective dimension in Noetherian rings.Trans. Am. Math. Soc. 102 (1962), 18-29. Zbl 0126.06503, MR 0138644, 10.1090/S0002-9947-1962-0138644-8
Reference: [2] Couchot, F.: RD-flatness and RD-injectivity.Commun. Algebra 34 (2006), 3675-3689. Zbl 1113.16010, MR 2262377, 10.1080/00927870600860817
Reference: [3] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [4] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: The existence of Gorenstein flat covers.Math. Scand. 2004 (2004), 46-62. Zbl 1061.16003, MR 2032335, 10.7146/math.scand.a-14429
Reference: [5] Faith, C.: Algebra. II. Ring Theory.Grundlehren der mathematischen Wissenschaften 191. Springer, Berlin (1976). Zbl 0335.16002, MR 0427349, 10.1007/978-3-642-65321-6
Reference: [6] Fu, X., Zhu, H., Ding, N.: On copure projective modules and copure projective dimensions.Commun. Algebra 40 (2012), 343-359. Zbl 1250.16003, MR 2876307, 10.1080/00927872.2010.531337
Reference: [7] Generalov, A. I.: On weak and $\omega$-high purity in the category of modules.Math. USSR, Sb. 34 (1978), 345-356. Zbl 0411.16024, MR 0498697, 10.1070/SM1978v034n03ABEH001209
Reference: [8] Hattori, A.: A foundation of torsion theory for modules over general rings.Nagoya Math. J. 17 (1960), 147-158. Zbl 0117.02202, MR 0137745, 10.1017/S0027763000002099
Reference: [9] Jensen, C. U., Simson, D.: Purity and generalized chain conditions.J. Pure Appl. Algebra 14 (1979), 297-305. Zbl 0407.18003, MR 0533428, 10.1016/0022-4049(79)90047-1
Reference: [10] Mao, L.: Properties of $RD$-projective and $RD$-injective modules.Turk. J. Math. 35 (2011), 187-205. Zbl 1235.16002, MR 2829591, 10.3906/mat-0904-53
Reference: [11] Mao, L., Ding, N.: On relative injective modules and relative coherent rings.Commun. Algebra 34 (2006), 2531-2545. Zbl 1104.16004, MR 2240391, 10.1080/00927870600651208
Reference: [12] Mao, L., Ding, N.: On divisible and torsionfree modules.Commun. Algebra 36 (2008), 708-731. Zbl 1144.16008, MR 2388036, 10.1080/00927870701724201
Reference: [13] Moradzadeh-Dehkordi, A., Shojaee, S. H.: Rings in which every ideal is pure-projective or FP-projective.J. Algebra 478 (2017), 419-436. Zbl 1405.16001, MR 3621683, 10.1016/j.jalgebra.2017.02.005
Reference: [14] Nicholson, W. K.: On $PP$-rings.Period. Math. Hung. 27 (1993), 85-88. Zbl 0797.16003, MR 1291156, 10.1007/BF01876633
Reference: [15] Nicholson, W. K., Yousif, M. F.: Quasi-Frobenius Rings.Cambridge Tracts in Mathematics 158. Cambridge University Press, Cambridge (2003). Zbl 1042.16009, MR 2003785, 10.1017/CBO9780511546525
Reference: [16] Olberding, B.: Modules of injective dimension one over Prüfer domains.J. Pure Appl. Algebra 153 (2000), 263-287. Zbl 0978.13009, MR 1783169, 10.1016/S0022-4049(99)00166-8
Reference: [17] Rotman, J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics 85. Academic Press, New York (1979). Zbl 0441.18018, MR 0538169
Reference: [18] Xiong, T.: Rings of copure projective dimension one.J. Korean Math. Soc. 54 (2017), 427-440. Zbl 1404.16002, MR 3622332, 10.4134/JKMS.j160014
Reference: [19] Xiong, T., Wang, F., Hu, K.: Copure projective modules and CPH-rings.J. Sichuan Norm. Univ., Nat. Sci. 36 (2013), 198-201 Chinese. Zbl 1289.13010, MR 3370493, 10.3969/j.issn.1001-8395.2013.02.008
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo