Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
sharp constant; truncated maximal operator; strong maximal operator
Summary:
This paper focuses on the operator norm of the truncated Hardy-Littlewood maximal operator $M^b_a$ and the strong truncated Hardy-Littlewood maximal operator $\widetilde {M}^{\boldsymbol {b}}_{\boldsymbol {a}}$, respectively. We first present the $L^1$-norm of $M^b_a$, and then the $L^1$-norm of $\widetilde {M}^{\boldsymbol {b}}_{\boldsymbol {a}}$ is given. Our study may have some enlightening significance for the research on sharp constant for the classical Hardy-Littlewood maximal inequality.
References:
[1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). DOI 10.1007/978-3-662-03282-4 | MR 1411441 | Zbl 0834.46021
[2] Aldaz, J. M.: Remarks on the Hardy-Littlewood maximal function. Proc. R. Soc. Edinb., Sect. A, Math. 128 (1998), 1-9. DOI 10.1017/S0308210500027116 | MR 1606325 | Zbl 0892.42010
[3] Aldaz, J. M., Lázaro, J. P.: The best constant for the centered maximal operator on radial decreasing functions. Math. Inequal. Appl. 14 (2011), 173-179. DOI 10.7153/mia-14-14 | MR 2796986 | Zbl 1210.42031
[4] Aldaz, J. M., Lázaro, J. P.: On high dimensional maximal operators. Banach J. Math. Anal. 7 (2013), 225-243. DOI 10.15352/bjma/1363784233 | MR 3039949 | Zbl 1266.42041
[5] Grafakos, L.: Classical Fourier Analysis. Graduate Texts in Mathematics 249. Springer, New York (2014). DOI 10.1007/978-1-4939-1194-3 | MR 3243734 | Zbl 1304.42001
[6] Grafakos, L., Montgomery-Smith, S.: Best constants for uncentered maximal functions. Bull. Lond. Math. Soc. 29 (1997), 60-64. DOI 10.1112/S0024609396002081 | MR 1416408 | Zbl 0865.42020
[7] Lu, S., Yan, D.: $L^p$ boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel. Sci. China, Ser. A 45 (2002), 196-213. DOI 10.1360/02ys9021 | MR 1893315 | Zbl 1054.42013
[8] Melas, A. D.: On the centered Hardy-Littlewood maximal operator. Trans. Am. Math. Soc. 354 (2002), 3263-3273. DOI 10.1090/S0002-9947-02-02900-8 | MR 1897399 | Zbl 1015.42015
[9] Melas, A. D.: The best constant for the centered Hardy-Littlewood maximal inequality. Ann. Math. (2) 157 (2003), 647-688. DOI 10.4007/annals.2003.157.647 | MR 1973058 | Zbl 1055.42013
[10] Soria, J., Tradacete, P.: Best constants for the Hardy-Littlewood maximal operator on finite graphs. J. Math. Anal. Appl. 436 (2016), 661-682. DOI 10.1016/j.jmaa.2015.11.076 | MR 3446971 | Zbl 1329.05286
[11] Wei, M., Nie, X., Wu, D., Yan, D.: A note on Hardy-Littlewood maximal operators. J. Inequal. Appl. 2016 (2016), Article ID 21, 13 pages. DOI 10.1186/s13660-016-0963-x | MR 3450806 | Zbl 1333.42040
[12] Zhang, X., Wei, M., Yan, D., He, Q.: Equivalence of operator norm for Hardy-Littlewood maximal operators and their truncated operators on Morrey spaces. Front. Math. China 15 (2020), 215-223 \99999DOI99999 10.1007/s11464-020-0812-6 . DOI 10.1007/s11464-020-0812-6 | MR 4074355 | Zbl 1440.42073
Partner of
EuDML logo