Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
plectic structure; motivic homotopy theory; norm map; Shimura variety
Summary:
We formulate a motivic homotopy theory version of the plectic conjecture of J. Nekovář and A. J. Scholl and give some initial discussion of it.
References:
[1] Bachmann, T., Hoyois, M.: Norms in Motivic Homotopy Theory. Astérisque 425. Société Mathématique de France, Paris (2021). DOI 10.24033/ast.1147 | MR 4288071 | Zbl 1522.14028
[2] Davidescu, C., Scholl, A. J.: Extensions in the cohomology of Hilbert modular varieties. Münster J. Math. 13 (2020), 509-518. DOI 10.17879/90169645603 | MR 4130690 | Zbl 1469.11193
[3] Deligne, P.: Théorie de Hodge II. Publ. Math., Inst. Hautes Étud. Sci. 40 (1971), 5-57 French. DOI 10.1007/BF02684692 | MR 0498551 | Zbl 0219.14007
[4] Deligne, P.: Travaux de Shimura. Séminaire N. Bourbaki Lecture Notes in Mathematics 244. Springer, Berlin (1971), 123-165 French. DOI 10.1007/BFb0058700 | MR 0498581 | Zbl 0225.14007
[5] Faltings, G.: Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten. Arbeitstagung Bonn 1984 Lecture Notes in Mathematics 1111. Springer, Berlin (1985), 321-383 German. DOI 10.1007/BFb0084598 | MR 0797429 | Zbl 0597.14036
[6] Harder, G.: On the cohomology of $SL(2,O)$. Lie Groups and Their Representations Halsted Press, New York (1975), 139-150. MR 0425019 | Zbl 0395.57028
[7] Hu, P.: Base change functors in the $\Bbb{A}^1$-stable homotopy category. Homology Homotopy Appl. 3 (2001), 417-451. DOI 10.4310/HHA.2001.v3.n2.a8 | MR 1856035 | Zbl 1012.55017
[8] Jardine, J. F.: Simplicial presheaves. J. Pure. Appl. Algebra 47 (1987), 35-87. DOI 10.1016/0022-4049(87)90100-9 | MR 0906403 | Zbl 0624.18007
[9] Jardine, J. F.: Motivic symmetric spectra. Doc. Math. 5 (2000), 445-553. DOI 10.4171/DM/86 | MR 1787949 | Zbl 0969.19004
[10] Morel, F., Voevodsky, V.: $\Bbb{A}^1$-homotopy theory of schemes. Publ. Math., Inst. Hautes Étud. Sci. 90 (1999), 45-143. DOI 10.1007/BF02698831 | MR 1813224 | Zbl 0983.14007
[11] Mumford, D.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Springer, Berlin (1965). MR 0214602 | Zbl 0147.39304
[12] Nekovář, J., Scholl, A. J.: Introduction to plectic cohomology. Advances in the Theory of Automorphic Forms and Their $L$-Functions Contemporary Mathematics 664. AMS, Providence (2016), 321-337. DOI 10.1090/conm/664 | MR 3502988 | Zbl 1402.11092
[13] Nekovář, J., Scholl, A. J.: Plectic Hodge theory I. Available at \brokenlink{ http://dx.doi.org/{10.17863/CAM.39172}} (2017). DOI 10.17863/CAM.39172
[14] Rapoport, M.: Compactifications de l'espace de modules de Hilbert-Blumenthal. Compos. Math. 36 (1978), 255-335 French. MR 0515050 | Zbl 0386.14006
[15] Geer, G. van der: Hilbert Modular Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 16. Springer, Berlin (1988). DOI 10.1007/978-3-642-61553-5 | MR 0930101 | Zbl 0634.14022
Partner of
EuDML logo