Title:
|
Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator (English) |
Author:
|
Singh, Gagandeep |
Author:
|
Singh, Gurcharanjit |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2025 |
Pages:
|
63-72 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc $E=\left\rbrace z\colon \mid z \mid <1\right\lbrace $ defined with $q$-derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here. (English) |
Keyword:
|
analytic functions |
Keyword:
|
bi-univalent functions |
Keyword:
|
alpha-convex functions |
Keyword:
|
coefficient bounds |
Keyword:
|
Fekete-Szegö inequality |
Keyword:
|
$q$-derivative |
Keyword:
|
subordination |
MSC:
|
30C45 |
MSC:
|
30C50 |
DOI:
|
10.5817/AM2025-2-63 |
. |
Date available:
|
2025-07-01T07:29:17Z |
Last updated:
|
2025-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/153017 |
. |
Reference:
|
[1] Aldweby, H., Darus, M.: On a subclass of bi-univalent functions associated with $q$-derivative operator.J. Math. Computer Sci. 19 (2019), 58–64. 10.22436/jmcs.019.01.08 |
Reference:
|
[2] Amourah, A., Frasin, B.A., Al-Hawary, T.: Coefficient estimates for a subclass of bi-univalent functions associated with symmetric $q$-derivative operator by means of the Gegenbauer polynomials.Kyungpook Math. J. 62 (2) (2022), 257–269. MR 4448623 |
Reference:
|
[3] Amourah, A., Frasin, B.A., Seoudy, T.M.: An application of Miller-Ross type Poisson distribution on certain subclasses of bi-univalent functions subordinate to Gegenbauer polynomials.Mathematics 10 (2022), 10 pp., 2462. MR 4345706, 10.3390/math10142462 |
Reference:
|
[4] Aouf, M.K.: On a class of $p$-valent starlike functions of order $\alpha $.Int. J. Math. Math. Sci. 10 (4) (1987), 733–744. MR 0907789, 10.1155/S0161171287000838 |
Reference:
|
[5] Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions.Mathematical Analysis and its Applications (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Kuwait; February 18-21, 1985, Pergamon Press, Elsevier Science Limited, Oxford, 1988, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2): 70-77, pp. 53–60. MR 0951657 |
Reference:
|
[6] Bulut, S.: Certain subclasses of analytic and bi-univalent functions involving the $q$-derivative operator.Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 66 (1) (2017), 108–114. MR 3611862, 10.1501/Commua1_0000000780 |
Reference:
|
[7] Duren, P.L.: Univalent Functions.Grundlehren der Mathematishen Wissenschaften, Springer, New York, 1983. Zbl 0514.30001, MR 0708494 |
Reference:
|
[8] Frasin, B.A.: Subordination results for a class of analytic functions defined by a linear operator.J. Inequ. Pure Appl. Math. 7 (4) (2006), 7 pp., Article 134. MR 2268588 |
Reference:
|
[9] Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions.Appl. Math. Lett. 24 (2011), 1569–1573. MR 2803711, 10.1016/j.aml.2011.03.048 |
Reference:
|
[10] Jackson, F.H.: On $q$-functions and a certain difference operator.Trans. Royal Soc. Edinburgh 46 (1908), 253–281. 10.1017/S0080456800002751 |
Reference:
|
[11] Jackson, F.H.: On $q$-definite integrals.Quarterly J. Pure Appl. Math. 41 (1910), 193–203. |
Reference:
|
[12] Janowski, W.: Some extremal problems for certain families of analytic functions.Ann. Pol. Math. 28 (1973), 297–326. MR 0328059, 10.4064/ap-28-3-297-326 |
Reference:
|
[13] Lewin, M.: On a coefficient problem for bi-univalent functions.Proc. Amer. Math. Soc. 18 (1967), 63–68. MR 0206255, 10.1090/S0002-9939-1967-0206255-1 |
Reference:
|
[14] Li, X.F., Wang, A.P.: Two new subclasses of bi-univalent functions.Int. Math. Forum 7 (30) (2012), 1495–1504. MR 2967369 |
Reference:
|
[15] Madian, S.M.: Some properties for certain class of bi-univalent functions defined by $q$-Catas operator with bounded boundary rotation.AIMS Math. 7 (1) (2021), 903–914. MR 4332416, 10.3934/math.2022053 |
Reference:
|
[16] Magesh, N.: Differential sandwich results for certain subclasses of analytic functions.Math. Comp. Modelling 54 (1–2) (2011), 803–814. MR 2801933, 10.1016/j.mcm.2011.03.028 |
Reference:
|
[17] Mocanu, P.T.: Une propriete de convexite géenéralisée dans la théorie de la représentation conforme.Mathematica (CLUJ) 11 (34) (1969), 127–133. MR 0273000 |
Reference:
|
[18] Páll-Szabó, A.O., Oros, G.I.: Coefficient related studies for new classes of bi-univalent functions.Mathematics 8 (2020), 1110. 10.3390/math8071110 |
Reference:
|
[19] Polatoglu, Y., Bolkal, M., Sen, A., Yavuz, E.: A study on the generalization of Janowski function in the unit disc.Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. 22 (2006), 27–31. MR 2216764 |
Reference:
|
[20] Rahmatan, H., Shokri, A., Ahmad, H., Botmart, T.: Subordination method for the estimation of certain subclass of analytic functions defined by the $q$-derivative operator.J. Funct. Spaces, 9 pages, Article Id. 5078060. MR 4429892 |
Reference:
|
[21] Seoudy, T.M., Aouf, M.K.: Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order.J. Math. Inequal. 10 (2016), 135–145. MR 3455309, 10.7153/jmi-10-11 |
Reference:
|
[22] Singh, Gagandeep: Coefficient estimates for bi-univalent functions with respect to symmetric points.J. Nonlinear Funct. Anal. 1 (2013), 1–9. |
Reference:
|
[23] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of Sakaguchi-type bi-univalent functions.Ganita 69 (2) (2019), 45–55. MR 4060858 |
Reference:
|
[24] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: A generalized subclass of alpha-convex bi-univalent functions of complex order.Jnanabha 50 (1) (2020), 65–71. MR 3962610, 10.58250/jnanabha.2020.50108 |
Reference:
|
[25] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of univalent and bi-univalent functions related to shell-like curves connected with Fibonacci numbers.General Mathematics 28 (1) (2020), 125–140. MR 3962610, 10.2478/gm-2020-0010 |
Reference:
|
[26] Sivapalan, J., Magesh, N., Murthy, S.: Coefficient estimates for bi-univalent functions with respect to symmetric conjugate points associated with Horadam Polynomials.Malaya J. Mat. 8 (2) (2020), 565–569. MR 4112566, 10.26637/MJM0802/0042 |
Reference:
|
[27] Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions.Appl. Math. Lett. 25 (2012), 990–994. MR 2902367, 10.1016/j.aml.2011.11.013 |
Reference:
|
[28] Srivastava, H.M., Sümer, S.: Some applications of a subordination theorem for a class of analytic functions.Appl. Math. Lett. 21 (4) (2008), 394–399. MR 2406520, 10.1016/j.aml.2007.02.032 |
Reference:
|
[29] Toklu, E.: A new subclass of bi-univalent functions defined by $q$-derivative.TWMS J. App. Engg. Math. 9 (2019), 84–90. |
Reference:
|
[30] Venkatesan, M., Kaliappan, V.: New subclasses of bi-univalent functions associated with $q$-calculus operator.Int. J. Nonlinear Anal. Appl. 13 (2) (2022), 2141–2149. |
. |