Previous |  Up |  Next

Article

Title: Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator (English)
Author: Singh, Gagandeep
Author: Singh, Gurcharanjit
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 61
Issue: 2
Year: 2025
Pages: 63-72
Summary lang: English
.
Category: math
.
Summary: The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc $E=\left\rbrace z\colon \mid z \mid <1\right\lbrace $ defined with $q$-derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here. (English)
Keyword: analytic functions
Keyword: bi-univalent functions
Keyword: alpha-convex functions
Keyword: coefficient bounds
Keyword: Fekete-Szegö inequality
Keyword: $q$-derivative
Keyword: subordination
MSC: 30C45
MSC: 30C50
DOI: 10.5817/AM2025-2-63
.
Date available: 2025-07-01T07:29:17Z
Last updated: 2025-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/153017
.
Reference: [1] Aldweby, H., Darus, M.: On a subclass of bi-univalent functions associated with $q$-derivative operator.J. Math. Computer Sci. 19 (2019), 58–64. 10.22436/jmcs.019.01.08
Reference: [2] Amourah, A., Frasin, B.A., Al-Hawary, T.: Coefficient estimates for a subclass of bi-univalent functions associated with symmetric $q$-derivative operator by means of the Gegenbauer polynomials.Kyungpook Math. J. 62 (2) (2022), 257–269. MR 4448623
Reference: [3] Amourah, A., Frasin, B.A., Seoudy, T.M.: An application of Miller-Ross type Poisson distribution on certain subclasses of bi-univalent functions subordinate to Gegenbauer polynomials.Mathematics 10 (2022), 10 pp., 2462. MR 4345706, 10.3390/math10142462
Reference: [4] Aouf, M.K.: On a class of $p$-valent starlike functions of order $\alpha $.Int. J. Math. Math. Sci. 10 (4) (1987), 733–744. MR 0907789, 10.1155/S0161171287000838
Reference: [5] Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions.Mathematical Analysis and its Applications (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Kuwait; February 18-21, 1985, Pergamon Press, Elsevier Science Limited, Oxford, 1988, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2): 70-77, pp. 53–60. MR 0951657
Reference: [6] Bulut, S.: Certain subclasses of analytic and bi-univalent functions involving the $q$-derivative operator.Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 66 (1) (2017), 108–114. MR 3611862, 10.1501/Commua1_0000000780
Reference: [7] Duren, P.L.: Univalent Functions.Grundlehren der Mathematishen Wissenschaften, Springer, New York, 1983. Zbl 0514.30001, MR 0708494
Reference: [8] Frasin, B.A.: Subordination results for a class of analytic functions defined by a linear operator.J. Inequ. Pure Appl. Math. 7 (4) (2006), 7 pp., Article 134. MR 2268588
Reference: [9] Frasin, B.A., Aouf, M.K.: New subclasses of bi-univalent functions.Appl. Math. Lett. 24 (2011), 1569–1573. MR 2803711, 10.1016/j.aml.2011.03.048
Reference: [10] Jackson, F.H.: On $q$-functions and a certain difference operator.Trans. Royal Soc. Edinburgh 46 (1908), 253–281. 10.1017/S0080456800002751
Reference: [11] Jackson, F.H.: On $q$-definite integrals.Quarterly J. Pure Appl. Math. 41 (1910), 193–203.
Reference: [12] Janowski, W.: Some extremal problems for certain families of analytic functions.Ann. Pol. Math. 28 (1973), 297–326. MR 0328059, 10.4064/ap-28-3-297-326
Reference: [13] Lewin, M.: On a coefficient problem for bi-univalent functions.Proc. Amer. Math. Soc. 18 (1967), 63–68. MR 0206255, 10.1090/S0002-9939-1967-0206255-1
Reference: [14] Li, X.F., Wang, A.P.: Two new subclasses of bi-univalent functions.Int. Math. Forum 7 (30) (2012), 1495–1504. MR 2967369
Reference: [15] Madian, S.M.: Some properties for certain class of bi-univalent functions defined by $q$-Catas operator with bounded boundary rotation.AIMS Math. 7 (1) (2021), 903–914. MR 4332416, 10.3934/math.2022053
Reference: [16] Magesh, N.: Differential sandwich results for certain subclasses of analytic functions.Math. Comp. Modelling 54 (1–2) (2011), 803–814. MR 2801933, 10.1016/j.mcm.2011.03.028
Reference: [17] Mocanu, P.T.: Une propriete de convexite géenéralisée dans la théorie de la représentation conforme.Mathematica (CLUJ) 11 (34) (1969), 127–133. MR 0273000
Reference: [18] Páll-Szabó, A.O., Oros, G.I.: Coefficient related studies for new classes of bi-univalent functions.Mathematics 8 (2020), 1110. 10.3390/math8071110
Reference: [19] Polatoglu, Y., Bolkal, M., Sen, A., Yavuz, E.: A study on the generalization of Janowski function in the unit disc.Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. 22 (2006), 27–31. MR 2216764
Reference: [20] Rahmatan, H., Shokri, A., Ahmad, H., Botmart, T.: Subordination method for the estimation of certain subclass of analytic functions defined by the $q$-derivative operator.J. Funct. Spaces, 9 pages, Article Id. 5078060. MR 4429892
Reference: [21] Seoudy, T.M., Aouf, M.K.: Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order.J. Math. Inequal. 10 (2016), 135–145. MR 3455309, 10.7153/jmi-10-11
Reference: [22] Singh, Gagandeep: Coefficient estimates for bi-univalent functions with respect to symmetric points.J. Nonlinear Funct. Anal. 1 (2013), 1–9.
Reference: [23] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of Sakaguchi-type bi-univalent functions.Ganita 69 (2) (2019), 45–55. MR 4060858
Reference: [24] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: A generalized subclass of alpha-convex bi-univalent functions of complex order.Jnanabha 50 (1) (2020), 65–71. MR 3962610, 10.58250/jnanabha.2020.50108
Reference: [25] Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit: Certain subclasses of univalent and bi-univalent functions related to shell-like curves connected with Fibonacci numbers.General Mathematics 28 (1) (2020), 125–140. MR 3962610, 10.2478/gm-2020-0010
Reference: [26] Sivapalan, J., Magesh, N., Murthy, S.: Coefficient estimates for bi-univalent functions with respect to symmetric conjugate points associated with Horadam Polynomials.Malaya J. Mat. 8 (2) (2020), 565–569. MR 4112566, 10.26637/MJM0802/0042
Reference: [27] Srivastava, H.M., Mishra, A.K., Gochhayat, P.: Certain subclasses of analytic and bi-univalent functions.Appl. Math. Lett. 25 (2012), 990–994. MR 2902367, 10.1016/j.aml.2011.11.013
Reference: [28] Srivastava, H.M., Sümer, S.: Some applications of a subordination theorem for a class of analytic functions.Appl. Math. Lett. 21 (4) (2008), 394–399. MR 2406520, 10.1016/j.aml.2007.02.032
Reference: [29] Toklu, E.: A new subclass of bi-univalent functions defined by $q$-derivative.TWMS J. App. Engg. Math. 9 (2019), 84–90.
Reference: [30] Venkatesan, M., Kaliappan, V.: New subclasses of bi-univalent functions associated with $q$-calculus operator.Int. J. Nonlinear Anal. Appl. 13 (2) (2022), 2141–2149.
.

Files

Files Size Format View
ArchMathRetro_061-2025-2_1.pdf 464.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo