[1] Alguliyev, R., Aliguliyev, R., Sukhostat, L.:
Method for quantitative risk assessment of cyber-physical systems based on vulnerability analysis. Kybernetika 60 (2024), 6, 779-796.
DOI
[2] Amrahov, S. E., Ar, Y., Tugrul, B., Akay, B. E., Kartli, N.:
A new approach to Mergesort algorithm: Divide smart and conquer. Future Gener. Computer Systems 157 (2024), 330-343.
DOI
[3] Amrahov, S. E., Tugrul, B.:
A community detection algorithm on graph data. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) IEEE (2018), pp. 1-4.
DOI
[4] Ar, Y.:
An initialization method for the latent vectors in probabilistic matrix factorization for sparse datasets. Evol. Intell. 13 (2020), 2, 269-281.
DOI
[5] Arasteh, M., Alizadeh, S., Lee, C. G.:
Gravity algorithm for the community detection of large-scale network. J. Ambient Intell. Human Comput. 14 (2023), 1217–-1228.
DOI
[6] Bera, R. K., Mondal, S. K.:
Analyzing a transportation problem with reliability under the shadowed environment. Oper. Res. Forum 6 (2025), article number 69.
DOI
[7] Bisht, M., Rawat, S.:
A novel interval-valued neutrosophic model to solve uncertain transportation problems. OPSEARCH (2025), 1-35.
DOI
[8] Cetin, P., Tanriöver, Ö.:
Priority rule for resource constrained project planning problem with predetermined work package durations. J. Faculty of Engineering and Architecture of Gazi University 35 (2020), 3, 1537-1549.
DOI
[9] Cetin, P., Amrahov, S. E.:
A new network-based community detection algorithm for disjoint communities. Turkish J. Electr. Engrg. Comput. Sci. 30 (2022), 6, Article 13.
DOI
[10] Cetin, P., Amrahov, S. Emrah:
A new overlapping community detection algorithm based on similarity of neighbors in complex networks. Kybernetika 58 (2022), 2, 277-300.
DOI
[11] Chi, K., Qu, H., Fu, Z.:
A novel approach for overlapping community detection in social networks based on the attraction. J. Comput. Sci. 85 (2025), 102508.
DOI
[12] Dhanasekar, S., Rani, J. J., Annamalai, M.:
Transportation problem for interval-valued trapezoidal intuitionistic fuzzy numbers. Int. J. Fuzzy Logic Intell. Systems 22 (2022), 2, 155-168.
DOI
[13] Chin, J. H., Ratnavelu, K.:
Community detection using constrained label propagation algorithm with nodes exemption. Computing \textit(104) (2022), 339–-358.
DOI
[14] Ghareeb, A., Nooruldeen, O., Arslan, C. A., Choi, J. K.:
Synergistic optimization of predictive models for water quality analysis in treatment plants using machine learning and evolutionary algorithms. Evolut. Intell. 18 (2025), 2, 1-24.
DOI
[15] Goswami, S., Das, A. K.:
Determining maximum cliques for community detection in weighted sparse networks. Knowl. Inf. Syst. 64 (2022), 289–-324.
DOI
[16] Hajibabaei, H., Seydi, V., Koochari, A.:
Community detection in weighted networks using probabilistic generative model. J. Intell. Inf. Syst. 60 (2023), 119–-136.
DOI
[17] Nejad, E. Hazrati, Yigit-Sert, S., Amrahov, S. Emrah:
An effective global path planning algorithm with teaching-learning-based optimization. Kybernetika 60 (2024), 3, 293-316.
DOI
[18] He, Z., Chen, W., Wei, X., Liu, Y.:
Mining statistically significant communities from weighted networks. IEEE Trans. Knowledge Data Engrg. 35 (2022), 6, 6073-6084.
DOI
[19] Kartli, N.:
Hybrid algorithms for fixed charge transportation problem. Kybernetika 61 (2025), 2, 141-167.
DOI
[20] Kartli, N., Bostanci, E., Guzel, M. S.:
A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 1, 45-63.
DOI
[21] Kartli, N., Bostanci, E., Guzel, M. S.:
Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227.
DOI
[22] Khastan, A., Jimenez, B. H., Moreno, A. B.:
On the new solution to interval linear fractional programming problems. Evolut. Intell. 17 (2024), 5, 4001-4005.
DOI
[23] Khawaja, F. R., Zhang, Z., Ullah, A.:
Common-neighbor based overlapping community detection in complex networks. Soc. Netw. Anal. Min. 15 (2025), Article number 61.
DOI
[24] Kumar, A., Kumar, P., Dohare, R.:
Revisiting neighbourhood proximity based algorithm for overlapping community detection in weighted networks. Soc. Netw. Anal. Min. 14 (2024), 105.
DOI
[25] Kumar, P.:
A depth-first search approach to detect the community structure of weighted networks using the neighbourhood proximity measure. Int. J. Data Sci. Anal. (2024).
DOI
[26] Lancichinetti, A., Fortunato, S., Kertész, J.:
Detecting the overlapping and hierarchical community structure in complex networks. {New J. Physics \textbf{11} (2009), 3, 033015.
DOI
[27] Li, S., Jiang, L., Wu, X., Han, W., Zhao, D., Wang, Z.:
A weighted network community detection algorithm based on deep learning. Appl. Math. Comput. 401 (2021), 126012.
DOI
[28] Li, W., Wang, J., Cai, J.: .
[29] Liu, H., Li, Z., Wang, N.:
Overlapping community detection algorithm based on similarity of node relationship. Soft Comput 27 (2023), 19, 13689–-13700.
DOI
[30] Lu, Z., Dong, Z. A.:
Gravitation-based hierarchical community detection algorithm for structuring supply chain network. Int. J. Comput. Intel. Syst. 16 (2023), 110.
DOI
[31] Ma, J., Zhou, L., Zuo, J.:
Adaptive community detection based on node dissimilarity. Int. J. Modern Physics C 2550066.
DOI
[32] McDaid, A., Greene, D., Hurley, N.:
Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515 (2011).
DOI
[33] Mohammed, S. N., Gunduc, S.:
TPM: Transition Probability Matrix-Graph Structural Feature based Embedding. Kybernetika 59 (2023), 2, 234-253.
DOI
[34] Murray, G., Carenini, G., Ng, R.: Using the Omega Index for evaluating abstractive community detection. In: Proc. Workshop on Evaluation Metrics and System Comparison for Automatic Summarization}, Association for Computational Linguistics, 2012. pp. 10-18.
[35] Nallusamy, K., Easwarakumar, K. S.:
PERMDEC: community deception in weighted networks using permanence. Computing 106 (2024), 353–-370.
DOI
[36] Nasibov, E., Demir, M., Vahaplar, A.:
A fuzzy logic apparel size decision methodology for online marketing. Int. J. Clothing Sci. Technol. 31 (2019), 2, 299-315.
DOI
[37] Newman, M. E. J.:
Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 74 (2006), 3, 036104.
DOI
[38] Ozhan, B., Tugrul, B.:
Analysis of Turkish cuisine flavors network. Int. J. Food Sci. Technol. 59 (2024), 2, 908-915.
DOI
[39] Pandey, S., Gupta, A.:
Lazy merge sort: An improvement over merge sort. In: 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater Noida 2024, pp. 1-6.
DOI
[40] Pattanayak, H S., Verma, H. K., Sangal, A. L.:
Gravitational community detection by predicting diameter. Discrete Math. Algorithms Appl. 14 (2022), 4, 2150145.
DOI
[41] Prokop, P., Drazdilova, P., Platos, J.:
Overlapping community detection in weighted networks via hierarchical clustering. Plos one 19 (2024, 10, e0312596.
DOI
[42] Rossetti, G., Pappalardo, L., Rinzivillo, S.: A novel approach to evaluate community detection algorithms on ground truth. In: Complex Networks VII (2016), 133-144.
[43] Sandhiya, S., Dhanapal, A.:
Solving neutrosophic multi-dimensional fixed charge transportation problem. Contempor. Math. 5 (2024), 3, 3601-3624.
DOI
[44] Masooleh, L. Samandari, Arbogast, J. E., Seider, W. D., Oktem, U., Soroush, M.:
An efficient algorithm for community detection in complex weighted networks. AIChE J. 67 (2021), 7, e17205.
DOI
[45] Shen, M., Ma, Z.:
A novel node gravitation-based label propagation algorithm for community detection. Int. J. Modern Physics C 30 (2019), 6, 1950049.
DOI
[46] Sheng, J., Liu, C., Chen, L., Wang, B., Zhang, J.:
Research on community detection in complex networks based on internode attraction. Entropy 22 (2020), 12, 1383.
DOI
[47] Shivani, Chauhan, D., Rani, D.:
A feasibility restoration particle swarm optimizer with chaotic maps for two-stage fixed-charge transportation problems. Swarm Evolution. Comput. 91 (2024), 101776.
DOI
[48] Subramaniam, M., Tripathi, T., Chandraumakantham, O.:
Cluster Sort: A Novel Hybrid Approach to Efficient In-Place Sorting Using Data Clustering. IEEE Access 13 (2025), 74359-74374.
DOI
[49] Suja, C. K., Harinarayanan, C. V., Arivalagan, A.:
Novel objective-based coot puzzle optimisation for overlapping community expansion in complex networks. Int. J. Network. Virtual Organis. 31 (2024), 4, 281-305.
DOI
[50] Wang, Y., Chen, J., Bai, J., Lin, X., Liang, S., Zhang, Y.:
Spatial-SLPA: uncovering overlapping communities in geospatial networks via the spatially constrained speaker-listener label propagation algorithm. In: International Conference on Smart Transportation and City Engineering (STCE 2024), SPIE, 13575 (2025), pp. 1247-1259).
DOI
[51] Wu, X., Teng, D., Zhang, H., Hu, J., Quan, Y., Miao, Q., Sun, P. G.:
Graph reconstruction and attraction method for community detection. Appl. Intell. 55 (2025), 5, 1-17.
DOI
[52] Yang, C., Li, M., Wang, Y.:
Overlapping community detection algorithm based on the law of universal gravitation. In: MATEC Web of Conferences 22 (2015), 01056 EDP Sciences.
DOI
[53] Yıldırım, H. B., Kullu, K., Amrahov, S. E.:
A graph model and a three-stage algorithm to aid the physically disabled with navigation. Univers. Access Inform. Soc. 23 (2024), 2, 901-911.
DOI
[54] Yu, Y. Y., Xu, C. Y., Cao, K. F.:
An effective community detection method based on one-dimensional “attraction” in network science. Int. J. Modern Physics C 31 (2020), 5, 2050071.
DOI
[55] Žalik, K. R., Žalik, B.:
Node attraction-facilitated evolution algorithm for community detection in networks. Soft Comput. 23 (2019), 6135–-6143.
DOI
[56] Zhou, H., Xi, B., Zhang, Y., Li, J., Zhang, F.:
A graph clustering algorithm using attraction-force similarity for community detection. IEEE Access 7 (2019), 13683-13692.
DOI
[57] 2025), Dolphins network dataset available at (accessed June:
.
DOI
[59] 2025), Political books network dataset available at (accessed June:
.
DOI
[60] 2025), Facebook social network dataset available at (accessed June:
.
DOI
[61] 2025), Netscience co-authorship network dataset available at (accessed June:
.
DOI