Previous |  Up |  Next

Article

Keywords:
bounded lattices; uninorms; T-superconorm; T-subnorm
Summary:
In this paper, we present the definition of mixed uninorms and propose several methods for constructing two special classes of mixed uninorms on bounded lattices through t-subnorms and t-superconorms. These methods generalize $\mathbb{U}_{\min},$ $\mathbb{U}_{\max},$ $\mathbb{U}_{\min}^{1}$ and $\mathbb{U}_{\max}^{0}$ on bounded lattices that have been previously discussed in the literature. Some examples are given to construct mixed uninorms on bounded lattices.
References:
[1] Asici, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85. DOI 
[2] Birkhoff, G.: Lattice Theory. (Third edition.). Amer. Math. Soc., Rhode Island 1967.
[3] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica, 2014, pp. 61-66. DOI 
[4] Baets, B. De, Mesiar, R.: Triangular norm on product lattice. Fuzzy Sets Syst. 104 (1999), 61-75. DOI 
[5] Coomann, G. De, Kerre, E.: Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310. DOI 
[6] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019) 111-139. DOI 
[7] Çaylı, G. D.: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264. DOI 
[8] Çaylı, G. D.: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26. DOI 
[9] Çaylı, G. D.: Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets Syst. 395 (2020), 107-129. DOI 
[10] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inform. Sci. 367 (2016), 221-231. DOI 
[11] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158. DOI 
[12] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston 2000.
[13] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. DOI 
[14] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94. DOI 
[15] Fodor, J. C., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI 10.1142/S0218488597000312 | Zbl 1232.03015
[16] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. Zbl 1206.68299
[17] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43. DOI 
[18] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131. DOI 
[19] Hua, X J., Zhang, H. P., Ouyang, Y.: Note on Construction of uninorms on bounded lattices. Kybernetika 57 (2021), 2, 372-382. DOI 
[20] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13. DOI 
[21] Ji, W.: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55. DOI 
[22] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI  | MR 3291484
[23] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Springer Science Business Media, 2013. Zbl 1087.20041
[24] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. DOI 
[25] Pedrycz, W., Hirota, K.: Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 41-52. DOI 
[26] Schweizer, B., Sklar, A., al, et: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. DOI 
[27] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108-535. DOI 
[28] Yager, R. R.: Aggregation operators and fuzzy systems modeling. Fuzzy Sets Syst. 67 (1994), 129-145. DOI 
[29] Yager, R. R., Rybalov, A.: Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI 
[30] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Systems 423 (2021), 107-121. DOI 
[31] Yager, R. R.: Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175. DOI  | MR 1839955
[32] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. DOI 
Partner of
EuDML logo