[1] Asici, E., Mesiar, R.:
On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85.
DOI
[2] Birkhoff, G.: Lattice Theory. (Third edition.). Amer. Math. Soc., Rhode Island 1967.
[3] Bodjanova, S., Kalina, M.:
Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica, 2014, pp. 61-66.
DOI
[4] Baets, B. De, Mesiar, R.:
Triangular norm on product lattice. Fuzzy Sets Syst. 104 (1999), 61-75.
DOI
[5] Coomann, G. De, Kerre, E.:
Order norms on bounded partially ordered sets. J. Fuzzy Math. 2 (1994), 281-310.
DOI
[6] Çaylı, G. D.:
Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019) 111-139.
DOI
[7] Çaylı, G. D.:
New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264.
DOI
[8] Çaylı, G. D.:
On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26.
DOI
[9] Çaylı, G. D.:
Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets Syst. 395 (2020), 107-129.
DOI
[10] Çaylı, G. D., Karaçal, F., Mesiar, R.:
On a new class of uninorms on bounded lattices. Inform. Sci. 367 (2016), 221-231.
DOI
[11] Çaylı, G. D.:
New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158.
DOI
[12] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston 2000.
[13] Dan, Y. X., Hu, B. Q., Qiao, J. S.:
New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.
DOI
[14] Dan, Y. X., Hu, B. Q.:
A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94.
DOI
[16] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press, 2009.
Zbl 1206.68299
[17] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.:
Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43.
DOI
[18] Hua, X. J., Ji, W.:
Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131.
DOI
[19] Hua, X J., Zhang, H. P., Ouyang, Y.:
Note on Construction of uninorms on bounded lattices. Kybernetika 57 (2021), 2, 372-382.
DOI
[20] He, P., Wang, X. P.:
Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13.
DOI
[21] Ji, W.:
Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.
DOI
[22] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.
DOI |
MR 3291484
[23] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Springer Science Business Media, 2013.
Zbl 1087.20041
[24] Ouyang, Y., Zhang, H. P.:
Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.
DOI
[25] Pedrycz, W., Hirota, K.:
Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 41-52.
DOI
[26] Schweizer, B., Sklar, A., al, et:
Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334.
DOI
[27] Xiu, Z. Y., Zheng, X.:
New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108-535.
DOI
[28] Yager, R. R.:
Aggregation operators and fuzzy systems modeling. Fuzzy Sets Syst. 67 (1994), 129-145.
DOI
[29] Yager, R. R., Rybalov, A.:
Uninorms aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120.
DOI
[30] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De:
A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Systems 423 (2021), 107-121.
DOI
[31] Yager, R. R.:
Uninorms in fuzzy system modeling. Fuzzy Sets Syst. 122 (2001), 167-175.
DOI |
MR 1839955
[32] Zhao, B., Wu, T.:
Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49.
DOI