Previous |  Up |  Next

Article

Keywords:
quasirecurrent manifold; associated vector field; constant scalar curvature; Ricci symmetry; Einstein; cyclic Ricci symmetry; conformally flat; quasirecurrent product manifold; space of constant curvature
Summary:
We introduce a type of Riemannian manifolds (namely, quasirecurrent manifold) and study its several geometric properties. Among others, we prove that the scalar curvature of such a manifold is constant, and that the manifold is Einstein under certain condition. In addition, we deal with a quasirecurrent product manifold. Finally, we ensure the existence of quasirecurrent manifold by a proper example.
References:
[1] Adati, T., Miyazawa, T.: On a Riemannian space with recurrent conformal curvature. Tensor, New Ser. 18 (1967), 348-354. MR 0215251 | Zbl 0152.39103
[2] Besse, A. L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Springer, Berlin (1987). DOI 10.1007/978-3-540-74311-8 | MR 0867684 | Zbl 0613.53001
[3] Cartan, E.: Sur une classe remarquable d'espaces de Riemann. I. Bull. Soc. Math. Fr. 54 (1926), 214-264 French \99999JFM99999 52.0425.01. DOI 10.24033/bsmf.1105 | MR 1504900
[4] Kim, J.: A type of weakly symmetric structure on a Riemannian manifold. Korean J. Math. 30 (2022), 61-66. DOI 10.11568/kjm.2022.30.1.61 | MR 4411280 | Zbl 1503.53029
[5] Pokhariyal, G. P.: Curvature tensors in a Lorentzian para Sasakian manifold. Quaest. Math. 19 (1996), 129-136. DOI 10.1080/16073606.1996.9631829 | MR 1390476 | Zbl 0859.53032
[6] Pokhariyal, G. P., Mishra, R. S.: Curvature tensors and their relativistics significance. Yokohama Math. J. 18 (1970), 105-108. MR 0292473 | Zbl 0228.53022
[7] Pokhariyal, G. P., Moindi, S. K., Nzimbi, B. M.: $W_2$-recurrent LP-Sasakian manifold. Univers. J. Math. Math. Sci. 3 (2013), 119-128. Zbl 1278.53034
[8] Ruse, H. S.: On simply harmonic spaces. J. Lond. Math. Soc. 21 (1946), 243-247. DOI 10.1112/jlms/s1-21.4.243 | MR 0021708 | Zbl 0063.06626
[9] Ruse, H. S.: On simply harmonic "kappa spaces" of four dimensions. Proc. Lond. Math. Soc., II. Ser. 50 (1948), 317-329. DOI 10.1112/plms/s2-50.4.317 | MR 0027170 | Zbl 0030.37202
[10] Ruse, H. S.: Three-dimensional spaces of recurrent curvature. Proc. Lond. Math. Soc., II. Ser. 50 (1948), 438-446. DOI 10.1112/plms/s2-50.6.438 | MR 0029250 | Zbl 0038.34303
[11] Walker, A. G.: On Ruse's spaces of recurrent curvature. Proc. Lond. Math. Soc., II. Ser. 52 (1950), 36-64. DOI 10.1112/plms/s2-52.1.36 | MR 0037574 | Zbl 0039.17702
Partner of
EuDML logo