Article
Keywords:
quasirecurrent manifold; associated vector field; constant scalar curvature; Ricci symmetry; Einstein; cyclic Ricci symmetry; conformally flat; quasirecurrent product manifold; space of constant curvature
Summary:
We introduce a type of Riemannian manifolds (namely, quasirecurrent manifold) and study its several geometric properties. Among others, we prove that the scalar curvature of such a manifold is constant, and that the manifold is Einstein under certain condition. In addition, we deal with a quasirecurrent product manifold. Finally, we ensure the existence of quasirecurrent manifold by a proper example.
References:
[1] Adati, T., Miyazawa, T.:
On a Riemannian space with recurrent conformal curvature. Tensor, New Ser. 18 (1967), 348-354.
MR 0215251 |
Zbl 0152.39103
[3] Cartan, E.:
Sur une classe remarquable d'espaces de Riemann. I. Bull. Soc. Math. Fr. 54 (1926), 214-264 French \99999JFM99999 52.0425.01.
DOI 10.24033/bsmf.1105 |
MR 1504900
[6] Pokhariyal, G. P., Mishra, R. S.:
Curvature tensors and their relativistics significance. Yokohama Math. J. 18 (1970), 105-108.
MR 0292473 |
Zbl 0228.53022
[7] Pokhariyal, G. P., Moindi, S. K., Nzimbi, B. M.:
$W_2$-recurrent LP-Sasakian manifold. Univers. J. Math. Math. Sci. 3 (2013), 119-128.
Zbl 1278.53034