| Title:
|
On the sequences of $(q,k)$-generalized Fibonacci numbers (English) |
| Author:
|
Lelis, Jean |
| Author:
|
Freitas, Gersica |
| Author:
|
Kreutz, Alessandra |
| Author:
|
Silva, Elaine |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
150 |
| Issue:
|
3 |
| Year:
|
2025 |
| Pages:
|
445-458 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
We consider a new family of recurrence sequences, the $(q,k)$-generalized Fibonacci numbers. These sequences naturally extend the well-known sequences of $k$-generalized Fibonacci numbers and generalized $k$-order Pell numbers. Further, we obtain the Binet formula and study the asymptotic behavior of the dominant root of the characteristic equation. The proof methods exploit pairs of characteristic polynomials which allow several auxiliary results. (English) |
| Keyword:
|
generalized Fibonacci number |
| Keyword:
|
generalized Pell number |
| Keyword:
|
recurrence sequence |
| Keyword:
|
Binet formula |
| MSC:
|
11B37 |
| MSC:
|
11B39 |
| DOI:
|
10.21136/MB.2024.0036-23 |
| . |
| Date available:
|
2025-09-26T14:42:09Z |
| Last updated:
|
2025-09-26 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/153086 |
| . |
| Reference:
|
[1] Boyd, D. W.: Linear recurrence relations for some generalized Pisot sequences.Advances in Number Theory Clarendon Press, New York (1993), 333-340. Zbl 0790.11012, MR 1368431, 10.1093/oso/9780198536680.003.0025 |
| Reference:
|
[2] Brauer, A.: On algebraic equations with all but one root in the interior of the unit circle.Math. Nachr. 4 (1951), 250-257. Zbl 0042.01501, MR 0041975, 10.1002/mana.3210040123 |
| Reference:
|
[3] Bravo, J. J., Gómez, C. A., Herrera, J. L.: On the intersection of $k$-Fibonacci and Pell numbers.Bull. Korean Math. Soc. 56 (2019), 535-547. Zbl 1437.11024, MR 3936488, 10.4134/BKMS.b180417 |
| Reference:
|
[4] Bravo, J. J., Herrera, J. L., Luca, F.: Common values of generalized Fibonacci and Pell sequences.J. Number Theory 226 (2021), 51-71. Zbl 1471.11049, MR 4239716, 10.1016/j.jnt.2021.03.001 |
| Reference:
|
[5] Bravo, J. J., Herrera, J. L., Luca, F.: On a generalization of the Pell sequence.Math. Bohem. 146 (2021), 199-213. Zbl 1499.11049, MR 4261368, 10.21136/MB.2020.0098-19 |
| Reference:
|
[6] Bravo, J. J., Herrera, J. L., Ramírez, J. L.: Combinatorial interpretation of generalized Pell numbers.J. Integer Seq. 23 (2020), Article ID 20.2.1, 15 pages. Zbl 1447.11023, MR 4072554 |
| Reference:
|
[7] Bravo, J. J., Luca, F.: Coincidences in generalized Fibonacci sequences.J. Number Theory 133 (2013), 2121-2137. Zbl 1272.11028, MR 3027957, 10.1016/j.jnt.2012.11.006 |
| Reference:
|
[8] Bravo, J. J., Luca, F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences.Publ. Math. Debr. 82 (2013), 623-639. Zbl 1274.11035, MR 3066434, 10.5486/PMD.2013.5390 |
| Reference:
|
[9] Catarino, P.: On some identities for $k$-Fibonacci sequence.Int. J. Contemp. Math. Sci. 9 (2014), 37-42. 10.12988/ijcms.2014.311120 |
| Reference:
|
[10] Dresden, G. P. B., Du, Z.: A simplified Binet formula for $k$-generalized Fibonacci numbers.J. Integer Seq. 17 (2014), Article ID 14.4.7, 19 pages. Zbl 1360.11031, MR 3181762 |
| Reference:
|
[11] Everest, G., Poorten, A. van der, Shparlinski, I., Ward, T.: Recurrence Sequences.Mathematical Surveys and Monographs 104. AMS, Providence (2003). Zbl 1033.11006, MR 1990179, 10.1090/surv/104 |
| Reference:
|
[12] Falcón, S., Ángel, P.: On the Fibonacci $k$-numbers.Chaos Solitons Fractals 32 (2007), 1615-1624. Zbl 1158.11306, MR 2299058, 10.1016/j.chaos.2006.09.022 |
| Reference:
|
[13] Hendel, R. J.: A method for uniformly proving a family of identities.Fibonacci Q. 60 (2022), 151-163. Zbl 1502.11025, MR 4453994, 10.1080/00150517.2022.12427488 |
| Reference:
|
[14] Kalman, D.: Generalized Fibonacci numbers by matrix methods.Fibonacci Q. 20 (1982), 73-76. Zbl 0472.10016, MR 0660765, 10.1080/00150517.1982.12430034 |
| Reference:
|
[15] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order-$k$ Pell numbers.Taiwanese J. Math. 10 (2006), 1661-1670. Zbl 1123.11005, MR 2275152, 10.11650/twjm/1500404581 |
| Reference:
|
[16] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Vol. 1.John Wiley & Sons, New York (2001). Zbl 0984.11010, MR 1855020, 10.1002/9781118033067 |
| Reference:
|
[17] Miller, M. D.: On generalized Fibonacci numbers.Am. Math. Mon. 78 (1971), 1108-1109. Zbl 0236.30004, MR 1536552, 10.1080/00029890.1971.11992952 |
| Reference:
|
[18] Sloane, N. J. A.: The on-line encyclopedia of integer sequences.Available at https://oeis.org/. |
| Reference:
|
[19] Wu, Z., Zhang, H.: On the reciprocal sums of higher-order sequences.Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. Zbl 1390.11042, MR 3084191, 10.1186/1687-1847-2013-189 |
| . |