Previous |  Up |  Next

Article

Title: Global weak solutions to a 3D self-consistent chemotaxis-Stokes system with nonlinear resource consumption (English)
Author: Ri, Kwang-Ok
Author: Kim, Yong-Ho
Author: Paek, Jong-Chol
Author: Hong, Song-Chol
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 5
Year: 2025
Pages: 695-709
Summary lang: English
.
Category: math
.
Summary: We study the self-consistent chemotaxis-fluid system with nonlinear resource consumption $$ \begin {cases} n_{t}+u\cdot \nabla n=\Delta n^m -\nabla \cdot (n \nabla c)+\nabla \cdot (n\nabla \phi ), & x\in \Omega ,\ t>0, \\ c_{t}+u\cdot \nabla c=\Delta c-n^\alpha c, & x\in \Omega ,\ t>0, \\ u_t+ \nabla P=\Delta u-n\nabla \phi +n \nabla c,& x\in \Omega ,\ t>0,\\ \nabla \cdot u=0,& x\in \Omega ,\ t>0,\\ \end {cases} $$ under no-flux boundary conditions in a bounded domain $\Omega \subset \mathbb {R}^3$ with smooth boundary. It is proved that this system possesses a global weak solution provided $m>1$ and $\alpha > \frac {4}{3}$. (English)
Keyword: chemotaxis
Keyword: self-consistent
Keyword: weak solution
Keyword: consumption
MSC: 35K92
MSC: 35Q35
MSC: 35Q92
MSC: 92C17
DOI: 10.21136/AM.2025.0041-25
.
Date available: 2025-11-07T17:58:54Z
Last updated: 2025-11-16
Stable URL: http://hdl.handle.net/10338.dmlcz/153155
.
Reference: [1] Bellomo, N., Bellouquid, A., Tao, Y., Winker, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues.Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. Zbl 1326.35397, MR 3351175, 10.1142/S021820251550044X
Reference: [2] Francesco, M. Di, Lorz, A., Markowich, P. A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior.Discrete Contin. Dyn. Syst. 28 (2010), 1437-1452. Zbl 1276.35103, MR 2679718, 10.3934/dcds.2010.28.1437
Reference: [3] Keller, E. F., Segel, L. A.: Model for chemotaxis.J. Theor. Biol. 30 (1971), 225-234. Zbl 1170.92307, 10.1016/0022-5193(71)90050-6
Reference: [4] Khelghati, A., Baghaei, K.: Boundedness of classical solutions for a chemotaxis model with rotational flux terms.ZAMM, Z. Angew. Math. Mech. 98 (2018), 1864-1877. Zbl 07776936, MR 3864015, 10.1002/zamm.201700091
Reference: [5] Liu, Y., Zhuang, Y.: Boundedness in a high-dimensional forager-exploiter model with nonlinear resource consumption by two species.Z. Angew. Math. Phys. 71 (2020), Article ID 151, 18 pages. Zbl 1448.35292, MR 4141610, 10.1007/s00033-020-01376-8
Reference: [6] Mizoguchi, N., Souplet, P.: Nondegeneracy of blow-up points for the parabolic Keller-Segel system.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31 (2014), 851-875. Zbl 1302.35075, MR 3249815, 10.1016/J.ANIHPC.2013.07.007
Reference: [7] Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system.Adv. Math. Sci. Appl. 5 (1995), 581-601. Zbl 0843.92007, MR 1361006
Reference: [8] Nam, K.-M., Li, K.-O., Kim, Y.-H.: Boundedness of solutions to a 2D chemotaxis-Navier-Stokes system with general sensitivity and nonlinear diffusion.Nonlinear Anal., Real World Appl. 73 (2023), Article ID 103906, 15 pages. Zbl 1519.35226, MR 4575115, 10.1016/j.nonrwa.2023.103906
Reference: [9] Ou, H., Wang, L.: Boundedness in a two-species chemotaxis system with nonlinear resource consumption.Qual. Theory Dyn. Syst. 23 (2024), Article ID 14, 16 pages. Zbl 1527.92013, MR 4648741, 10.1007/s12346-023-00873-1
Reference: [10] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach.Birkhäuser, Basel (2001). Zbl 0983.35004, MR 3013225, 10.1007/978-3-0348-8255-2
Reference: [11] Wang, Y.: Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system.Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 329-349. Zbl 1442.35481, MR 4043697, 10.3934/dcdss.2020019
Reference: [12] Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. Zbl 1395.92024, MR 3801284, 10.2422/2036-2145.201603_004
Reference: [13] Wang, Y., Zhao, L.: A 3D self-consistent chemotaxis-fluid system with nonlinear diffusion.J. Differ. Equations 269 (2020), 148-179. Zbl 1436.35238, MR 4081519, 10.1016/j.jde.2019.12.002
Reference: [14] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model.J. Differ. Equations 248 (2010), 2889-2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [15] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization.J. Funct. Anal. 276 (2019), 1339-1401. Zbl 1408.35132, MR 3912779, 10.1016/j.jfa.2018.12.009
Reference: [16] Wu, D., Shen, S.: Global boundedness and stabilization in a forager-exploiter model with logistic growth and nonlinear resource consumption.Nonlinear Anal., Real World Appl. 72 (2023), Article ID 103854, 19 pages. Zbl 1517.35053, MR 4548493, 10.1016/j.nonrwa.2023.103854
Reference: [17] Xie, J., Zheng, J.: A new result for global existence and boundedness in a three-dimensional self-consistent chemotaxis-fluid system with nonlinear diffusion.Acta Appl. Math. 183 (2023), Article ID 5, 36 pages. Zbl 1507.35041, MR 4534454, 10.1007/s10440-022-00552-4
Reference: [18] Yu, P.: Global existence and boundedness in a chemotaxis-Stokes system with arbitrary porous medium diffusion.Math. Methods Appl. Sci. 43 (2020), 639-657. Zbl 1439.35254, MR 4056454, 10.1002/mma.5920
Reference: [19] Zhang, Q., Tao, W.: Boundedness and stabilization in a two-species chemotaxis system with signal absorption.Comput. Math. Appl. 78 (2019), 2672-2681. Zbl 1443.92062, MR 4001731, 10.1016/j.camwa.2019.04.008
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo