Previous |  Up |  Next

Article

Title: First- and second-order adjoint methods for stochastic identification problems (English)
Author: Anh, Nguyen Thi Van
Author: Heldt, Adrian
Author: Khan, Akhtar Ali
Author: Tammer, Christiane
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 6
Year: 2025
Pages: 763-795
Summary lang: English
.
Category: math
.
Summary: We present a unified framework for estimating stochastic parameters in general variational problems. This nonlinear inverse problem is formulated as a stochastic optimization problem using the output least-squares (OLS) objective, which minimizes the discrepancy between observed data and the computed solution. A key challenge in OLS-based formulations is the efficient computation of first- and second-order derivatives of the OLS functional, which depend on the corresponding derivatives of the parameter-to-solution map often costly and difficult to evaluate, especially in stochastic settings. To address this, we develop a rigorous computational approach based on first- and second-order adjoint methods for inverse problems governed by stochastic variational problems. Specifically, we propose a new first-order adjoint method for computing the gradient of the OLS objective and introduce two novel second-order adjoint methods for Hessian evaluation. A stochastic Galerkin discretization framework is employed, enabling efficient implementation of the adjoint-based derivative computations. Numerical experiments demonstrate the accuracy and efficiency of the proposed computational framework. (English)
Keyword: stochastic inverse problem
Keyword: partial differential equations with random data
Keyword: stochastic Galerkin method
Keyword: regularization
Keyword: first-order adjoint method
Keyword: second-order adjoint method
MSC: 35R30
MSC: 49N45
MSC: 65J20
MSC: 65J22
MSC: 65M30
DOI: 10.21136/AM.2025.0151-25
.
Date available: 2025-12-20T05:03:05Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153223
.
Reference: [1] Alekseev, A. K., Navon, I. M.: The analysis of an ill-posed problem using multi-scale resolution and second-order adjoint techniques.Comput. Methods Appl. Mech. Eng. 190 (2001), 1937-1953. Zbl 1031.76040, MR 1813303, 10.1016/S0045-7825(00)00299-1
Reference: [2] Alekseev, A. K., Navon, I. M., Steward, J. L.: Comparison of advanced large-scale minimization algorithms for the solution of inverse ill-posed problems.Optim. Methods Softw. 24 (2009), 63-87. Zbl 1189.90221, MR 2489430, 10.1080/10556780802370746
Reference: [3] Alexanderian, A., Petra, N., Stadler, G., Ghattas, O.: Mean-variance risk-averse optimal control of systems governed by PDEs with random parameter fields using quadratic approximations.SIAM/ASA J. Uncertain. Quantif. 5 (2017), 1166-1192. Zbl 1391.93289, MR 3725286, 10.1137/16M106306X
Reference: [4] Altaf, M. U., Gharamti, M. El, Heemink, A. W., Hoteit, I.: A reduced adjoint approach to variational data assimilation.Comput. Methods Appl. Mech. Eng. 254 (2013), 1-13. Zbl 1297.93053, MR 3002758, 10.1016/j.cma.2012.10.003
Reference: [5] Arens, K., Rentrop, P., Stoll, S. O., Wever, U.: An adjoint approach to optimal design of turbine blades.Appl. Numer. Math. 53 (2005), 93-105. Zbl 1116.49326, MR 2128516, 10.1016/j.apnum.2004.11.003
Reference: [6] Narayanan, V. A. Badri, Zabaras, N.: Stochastic inverse heat conduction using a spectral approach.Int. J. Numer. Methods Eng. 60 (2004), 1569-1593. Zbl 1098.80008, MR 2068927, 10.1002/nme.1015
Reference: [7] Benner, P., Onwunta, A., Stoll, M.: Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs.SIAM J. Matrix Anal. Appl. 37 (2016), 491-518. Zbl 1382.65074, MR 3483160, 10.1137/15M1018502
Reference: [8] Boger, D. A., Paterson, E. G.: A continuous adjoint approach to design optimization in cavitating flow using a barotropic model.Comput. Fluids 101 (2014), 155-169. Zbl 1391.76062, MR 3233426, 10.1016/j.compfluid.2014.06.014
Reference: [9] Borggaard, J., Wyk, H.-W. van: Gradient-based estimation of uncertain parameters for elliptic partial differential equations.Inverse Probl. 31 (2015), Article ID 065008, 33 pages. Zbl 1321.35028, MR 3350627, 10.1088/0266-5611/31/6/065008
Reference: [10] Borzì, A., Winckel, G. von: Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients.SIAM J. Sci. Comput. 31 (2009), 2172-2192. Zbl 1196.35029, MR 2516148, 10.1137/070711311
Reference: [11] Cacuci, D. G.: Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems. I. Computational methodology.J. Comput. Phys. 284 (2015), 687-699. Zbl 1352.65130, MR 3303639, 10.1016/j.jcp.2014.12.042
Reference: [12] Cacuci, D. G.: Second-order adjoint sensitivity analysis methodology (2nd-ASAM) for computing exactly and efficiently first- and second-order sensitivities in large-scale linear systems. II. Illustrative application to a paradigm particle diffusion problem.J. Comput. Phys. 284 (2015), 700-717. Zbl 1352.65131, MR 3303640, 10.1016/j.jcp.2014.11.030
Reference: [13] Cahill, N. D., Jadamba, B., Khan, A. A., Sama, M., Winkler, B. C.: A first-order adjoint and a second-order hybrid method for an energy output least-squares elastography inverse problem of identifying tumor location.Bound. Value Probl. 2013 (2013), Article ID 263, 19 pages. Zbl 1292.35323, MR 3341371, 10.1186/1687-2770-2013-263
Reference: [14] Chen, P., Quarteroni, A., Rozza, G.: Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations.SIAM J. Numer. Anal. 51 (2013), 2700-2722. Zbl 1281.49015, MR 3115461, 10.1137/120884158
Reference: [15] Chen, P., Quarteroni, A., Rozza, G.: Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations.Numer. Math. 133 (2016), 67-102. Zbl 1344.93109, MR 3475656, 10.1007/s00211-015-0743-4
Reference: [16] Chen, Z., Zhang, W., Zou, J.: Stochastic convergence of regularized solutions and their finite element approximations to inverse source problems.SIAM J. Numer. Anal. 60 (2022), 751-780. Zbl 07506907, MR 4403550, 10.1137/21M1409779
Reference: [17] Cho, M., Jadamba, B., Kahler, R., Khan, A. A., Sama, M.: First-order and second-order adjoint methods for the inverse problem of identifying non-linear parameters in PDEs.Industrial Mathematics and Complex Systems Springer, Singapore (2017), 147-163. Zbl 1396.49028, MR 3728376, 10.1007/978-981-10-3758-0_9
Reference: [18] Cho, M., Jadamba, B., Khan, A. A., Oberai, A. A., Sama, M.: Identification in mixed variational problems by adjoint methods with applications.Modeling and Optimization: Theory and Applications Springer Proceedings in Mathematics & Statistics 213. Springer, Cham (2017), 65-84. Zbl 1384.49009, MR 3746179, 10.1007/978-3-319-66616-7_5
Reference: [19] Choi, Y., Lee, H.-C.: Error analysis of finite element approximations of the optimal control problem for stochastic Stokes equations with additive white noise.Appl. Numer. Math. 133 (2018), 144-160. Zbl 1397.65255, MR 3843759, 10.1016/j.apnum.2018.03.002
Reference: [20] Cioaca, A., Alexe, M., Sandu, A.: Second-order adjoints for solving PDE-constrained optimization problems.Optim. Methods Softw. 27 (2012), 625-653. Zbl 1260.49060, MR 2946050, 10.1080/10556788.2011.610455
Reference: [21] Cioaca, A., Sandu, A.: An optimization framework to improve 4D-var data assimilation system performance.J. Comput. Phys. 275 (2014), 377-389. Zbl 1349.90887, MR 3250338, 10.1016/j.jcp.2014.07.005
Reference: [22] Daescu, D. N., Navon, I. M.: Efficiency of a POD-based reduced second-order adjoint model in 4D-var data assimilation.Int. J. Numer. Methods Fluids 53 (2007), 985-1004. Zbl 1370.76122, MR 2289211, 10.1002/fld.1316
Reference: [23] Dambrine, M., Khan, A. A., Sama, M.: A stochastic regularized second-order iterative scheme for optimal control and inverse problems in stochastic partial differential equations.Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 380 (2022), Article ID 20210352, 13 pages. MR 4505744, 10.1098/rsta.2021.0352
Reference: [24] Dambrine, M., Khan, A. A., Sama, M., Starkloff, H.-J.: Stochastic elliptic inverse problems: Solvability, convergence rates, discretization, and applications.J. Convex Anal. 30 (2023), 851-885. Zbl 1522.35577, MR 4650286
Reference: [25] Dippon, J., Gwinner, J., Khan, A. A., Sama, M.: A new regularized stochastic approximation framework for stochastic inverse problems.Nonlinear Anal., Real World Appl. 73 (2023), Article ID 103869, 29 pages. Zbl 1519.35367, MR 4563581, 10.1016/j.nonrwa.2023.103869
Reference: [26] Dominguez, N., Gibiat, V., Esquerre, Y.: Time domain topological gradient and time reversal analogy: An inverse method for ultrasonic target detection.Wave Motion 42 (2005), 31-52. Zbl 1189.74070, MR 2133087, 10.1016/j.wavemoti.2004.09.005
Reference: [27] Faverjon, B., Puig, B., Baranger, T. N.: Identification of boundary conditions by solving Cauchy problem in linear elasticity with material uncertainties.Comput. Math. Appl. 73 (2017), 494-504. Zbl 1370.35275, MR 3600206, 10.1016/j.camwa.2016.12.011
Reference: [28] Gong, B., Liu, W., Tang, T., Zhao, W., Zhou, T.: An efficient gradient projection method for stochastic optimal control problems.SIAM J. Numer. Anal. 55 (2017), 2982-3005. Zbl 1386.60239, MR 3730543, 10.1137/17M1123559
Reference: [29] Gunzburger, M. D., Lee, H.-C., Lee, J.: Error estimates of stochastic optimal Neumann boundary control problems.SIAM J. Numer. Anal. 49 (2011), 1532-1552. Zbl 1243.65008, MR 2831060, 10.1137/100801731
Reference: [30] Guth, P. A., Kaarnioja, V., Kuo, F. Y., Schillings, C., Sloan, I. H.: A quasi-Monte Carlo method for optimal control under uncertainty.SIAM/ASA J. Uncertain. Quantif. 9 (2021), 354-383. Zbl 1475.49004, MR 4241521, 10.1137/19M1294952
Reference: [31] Hawks, R., Jadamba, B., Khan, A. A., Sama, M., Yang, Y.: A variational inequality based stochastic approximation for inverse problems in stochastic partial differential equations.Nonlinear Analysis and Global Optimization Springer Optimization and Its Applications 167. Springer, Cham (2021), 207-226. Zbl 1472.35451, MR 4238578, 10.1007/978-3-030-61732-5_9
Reference: [32] Huang, F., Chen, Y., Chen, Y., Sun, H.: Stochastic collocation for optimal control problems with stochastic PDE constraints by meshless techniques.J. Math. Anal. Appl. 530 (2024), Article ID 127634, 18 pages. Zbl 07759006, MR 4623961, 10.1016/j.jmaa.2023.127634
Reference: [33] Jadamba, B., Khan, A. A., Oberai, A. A., Sama, M.: First-order and second-order adjoint methods for parameter identification problems with an application to the elasticity imaging inverse problem.Inverse Probl. Sci. Eng. 25 (2017), 1768-1787. Zbl 1387.92057, MR 3698480, 10.1080/17415977.2017.1289195
Reference: [34] Jadamba, B., Khan, A. A., Raciti, F., Sama, M.: A variational inequality based stochastic approximation for estimating the flexural rigidity in random fourth-order models.Commun. Nonlinear Sci. Numer. Simul. 111 (2022), Article ID 106406, 11 pages. Zbl 1489.35312, MR 4402577, 10.1016/j.cnsns.2022.106406
Reference: [35] Jadamba, B., Khan, A. A., Sama, M.: A regularized stochastic subgradient projection method for an optimal control problem in a stochastic partial differential equation.Mathematical Analysis in Interdisciplinary Research Springer Optimization and Its Applications 179. Springer, Cham (2021), 417-429. Zbl 1500.93146, MR 4404289, 10.1007/978-3-030-84721-0_19
Reference: [36] Jadamba, B., Khan, A. A., Sama, M., Starkloff, H.-J., Tammer, C.: A convex optimization framework for the inverse problem of identifying a random parameter in a stochastic partial differential equation.SIAM/ASA J. Uncertain. Quantif. 9 (2021), 922-952. Zbl 1471.35332, MR 4279154, 10.1137/20M1323953
Reference: [37] Jadamba, B., Khan, A. A., Sama, M., Yang, Y.: An iteratively regularized stochastic gradient method for estimating a random parameter in a stochastic PDEs: A variational inequality approach.J. Nonlinear Var. Anal. 5 (2021), 865-880. Zbl 07557729, 10.23952/jnva.5.2021.6.02
Reference: [38] Jensen, J. S., Nakshatrala, P. B., Tortorelli, D. A.: On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems.Struct. Multidiscip. Optim. 49 (2014), 831-837. MR 3198981, 10.1007/s00158-013-1024-4
Reference: [39] Jin, B., Zou, J.: Inversion of Robin coefficient by a spectral stochastic finite element approach.J. Comput. Phys. 227 (2008), 3282-3306. Zbl 1141.65005, MR 2392734, 10.1016/j.jcp.2007.11.042
Reference: [40] Kennedy, G. J., Hansen, J. S.: The hybrid-adjoint method: A semi-analytic gradient evaluation technique applied to composite cure cycle optimization.Optim. Eng. 11 (2010), 23-43. Zbl 1273.74389, MR 2601731, 10.1007/s11081-008-9068-9
Reference: [41] Keyanpour, M., Nehrani, A. M.: Optimal thickness of a cylindrical shell subject to stochastic forces.J. Optim. Theory Appl. 167 (2015), 1032-1050. Zbl 1332.74043, MR 3424702, 10.1007/s10957-014-0663-y
Reference: [42] Knopoff, D. A., Fernández, D. R., Torres, G. A., Turner, C. V.: Adjoint method for a tumor growth PDE-constrained optimization problem.Comput. Math. Appl. 66 (2013), 1104-1119. Zbl 07863342, MR 3093483, 10.1016/j.camwa.2013.05.028
Reference: [43] Kourounis, D., Durlofsky, L. J., Jansen, J. D., Aziz, K.: Adjoint formulation and constraint handling for gradient-based optimization of compositional reservoir flow.Comput. Geosci. 18 (2014), 117-137. Zbl 1393.76122, MR 3208745, 10.1007/s10596-013-9385-8
Reference: [44] Kubínová, M., Pultarová, I.: Block preconditioning of stochastic Galerkin problems: New two-sided guaranteed spectral bounds.SIAM/ASA J. Uncertain. Quantif. 8 (2020), 88-113. Zbl 1447.65151, MR 4051982, 10.1137/19M125902X
Reference: [45] Dimet, F.-X. Le, Navon, I. M., Daescu, D. N.: Second-order information in data assimilation.Mon. Weather Rev. 130 (2002), 629-648. 10.1175/1520-0493(2002)130<0629:SOIIDA>2.0.CO;2
Reference: [46] Lewis, R. M.: Numerical computation of sensitivities and the adjoint approach.Computational Methods for Optimal Design and Control Progress in Systems and Control Theory 24. Birkhäuser Boston (1998), 285-302. Zbl 0924.65054, MR 1646782, 10.1007/978-1-4612-1780-0_16
Reference: [47] Liu, G., Geier, M., Liu, Z., Krafczyk, M., Chen, T.: Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method.Comput. Math. Appl. 68 (2014), 1374-1392. Zbl 1367.76044, MR 3272547, 10.1016/j.camwa.2014.09.002
Reference: [48] Lord, G. J., Powell, C. E., Shardlow, T.: An Introduction to Computational Stochastic PDEs.Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (2014). Zbl 1327.60011, MR 3308418, 10.1017/CBO9781139017329
Reference: [49] Lozano, C.: Discrete surprises in the computation of sensitivities from boundary integrals in the continuous adjoint approach to inviscid aerodynamic shape optimization.Comput. Fluids 56 (2012), 118-127. Zbl 1365.76100, MR 2978800, 10.1016/j.compfluid.2011.12.001
Reference: [50] Zanganeh, M. Namdar, Kraaijevanger, J. F. B. M., Buurman, H. W., Jansen, J. D., Rossen, W. R.: Challenges in adjoint-based optimization of a foam EOR process.Comput. Geosci. 18 (2014), 563-577. MR 3253767, 10.1007/s10596-014-9412-4
Reference: [51] Nouy, A., Soize, C.: Random field representations for stochastic elliptic boundary value problems and statistical inverse problems.Eur. J. Appl. Math. 25 (2014), 339-373. Zbl 1298.60056, MR 3197997, 10.1017/S0956792514000072
Reference: [52] Oberai, A. A., Gokhale, N. H., Feijóo, G. R.: Solution of inverse problems in elasticity imaging using the adjoint method.Inverse Probl. 19 (2003), 297-313. Zbl 1171.35490, MR 1991790, 10.1088/0266-5611/19/2/304
Reference: [53] Papadimitriou, D. I., Giannakoglou, K. C.: Aerodynamic shape optimization using first and second order adjoint and direct approaches.Arch. Comput. Methods Eng. 15 (2008), 447-488. Zbl 1170.76348, MR 2453310, 10.1007/s11831-008-9025-y
Reference: [54] Pingen, G., Evgrafov, A., Maute, K.: Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization.Comput. Fluids 38 (2009), 910-923. Zbl 1242.76254, MR 2645691, 10.1016/j.compfluid.2008.10.002
Reference: [55] Reséndiz, E., Pinnau, R.: Adjoint-based optimization of particle trajectories in laminar flows.Appl. Math. Comput. 248 (2014), 567-583. Zbl 1338.76027, MR 3276711, 10.1016/j.amc.2014.10.007
Reference: [56] Shen, W., Ge, L., Liu, W.: Stochastic Galerkin method for optimal control problem governed by random elliptic PDE with state constraints.J. Sci. Comput. 78 (2019), 1571-1600. Zbl 1428.65095, MR 3934678, 10.1007/s10915-018-0823-6
Reference: [57] Tottorelli, D. A., Michaleris, P.: Design sensitivity analysis: Overview and review.Inverse Probl. Eng. 1 (1994), 71-105. 10.1080/174159794088027573
Reference: [58] Touzeau, C., Magnain, B., Lubineau, G., Florentin, E.: Robust method for identifying material parameters based on virtual fields in elastodynamics.Comput. Math. Appl. 77 (2019), 3021-3042. Zbl 1442.74077, MR 3958649, 10.1016/j.camwa.2018.08.005
Reference: [59] Uy, W. I. T., Grigoriu, M.: Specification of additional information for solving stochastic inverse problems.SIAM J. Sci. Comput. 41 (2019), A2880--A2910. Zbl 1439.35571, MR 4008643, 10.1137/18M120155X
Reference: [60] Volkov, O., Protas, B., Liao, W., Glander, D. W.: Adjoint-based optimization of thermo-fluid phenomena in welding processes.J. Eng. Math. 65 (2009), 201-220. Zbl 1180.76050, MR 2546438, 10.1007/s10665-009-9292-0
Reference: [61] Wang, S.-L., Yang, Y.-F., Zeng, Y.-H.: The adjoint method for the inverse problem of option pricing.Math. Probl. Eng. 2014 (2014), Article ID 314104, 7 pages. Zbl 1407.91275, MR 3191166, 10.1155/2014/314104
Reference: [62] Wang, Y., Chen, P., Li, W.: Projected Wasserstein gradient descent for high-dimensional Bayesian inference.SIAM/ASA J. Uncertain. Quantif. 10 (2022), 1513-1532. Zbl 1506.62270, MR 4512980, 10.1137/21M1454018
Reference: [63] Wang, Z., Navon, I. M., Dimet, F. X. Le, Zou, X.: The second order adjoint analysis: Theory and applications.Meteorology Atmospheric Phys. 50 (1992), 3-20. 10.1007/BF01025501
Reference: [64] Ye, X., Li, P., Liu, F. Y.: Exact time-domain second-order adjoint-sensitivity computation for linear circuit analysis and optimization.IEEE Trans. Circuits Syst. I, Regul. Pap. 57 (2010), 236-248. Zbl 1469.94232, MR 2729824, 10.1109/TCSI.2009.2015720
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo