[1] Ao, J., Zhou, M., Zhang, B.:
A dual mortar embedded mesh method for internal interface problems with strong discontinuities. Int. J. Numer. Methods Eng. 123 (2022), 5652-5681.
DOI 10.1002/nme.7082 |
MR 4509716 |
Zbl 07769291
[4] Bernardi, C., Maday, Y., Patera, A. T.:
Domain decomposition by the mortar element method. Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters Kluwer Academic Publishers, Dordrecht (1993), 269-286.
DOI 10.1007/978-94-011-1810-1_17 |
MR 1222428 |
Zbl 0799.65124
[6] Burman, E.:
Projection stabilization of Lagrange multipliers for the imposition of constraints on interfaces and boundaries. Numer. Methods Partial Differ. Equations 30 (2014), 567-592.
DOI 10.1002/num.21829 |
MR 3163976 |
Zbl 1288.65153
[8] El-Abbasi, N., Bathe, K.-J.:
Stability and patch test performance of contact discretizations and a new solution algorithm. Comput. Struct. 79 (2001), 1473-1486.
DOI 10.1016/S0045-7949(01)00048-7
[9] Elman, H. C., Silvester, D. J., Wathen, A. J.: Iterative Methods for Problems in Computational Fluid Dynamics. Report No. 96/19. Oxford University Computing Laboratory, Oxford (1996).
[12] Franceschini, A., Castelletto, N., White, J. A., Tchelepi, H. A.:
Algebraically stabilized Lagrange multiplier method for frictional contact mechanics with hydraulically active fractures. Comput. Methods Appl. Mech. Eng. 368 (2020), Article ID 113161, 32 pages.
DOI 10.1016/j.cma.2020.113161 |
MR 4106669 |
Zbl 1506.74400
[18] Lamichhane, B. P.:
Higher Order Mortar Finite Elements with Dual Lagrange Multiplier Spaces and Applications. Universität Stuttgart, Stuttgart (2006).
Zbl 1196.65012
[21] Popp, A.: Mortar Methods for Computational Contact Mechanics and General Interface Problems: Ph.D. Thesis. Technische Universität München, München (2012).
[22] A. Popp, M. Gitterle, M., W. Gee, W. A. Wall:
A dual mortar approach for 3D finite deformation contact with consistent linearization. Int. J. Numer. Methods Eng. 83 (2010), 1428-1465.
DOI 10.1002/nme.2866 |
MR 2722505 |
Zbl 1202.74183
[24] Popp, A., Wohlmuth, B. I., Gee, M. W., Wall, W. A.:
Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM J. Sci. Comput. 34 (2012), B421--B446.
DOI 10.1137/110848190 |
MR 2970413 |
Zbl 1250.74020
[30] Wohlmuth, B. I.:
Discretization techniques based on domain decomposition. Discretization Methods and Iterative Solvers Based on Domain Decomposition Lecture Notes in Computational Science and Engineering 17. Springer, Berlin (2001), 1-84.
DOI 10.1007/978-3-642-56767-4_1
[33] Yang, B., Laursen, T. A., Meng, X.:
Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng. 62 (2005), 1183-1225.
DOI 10.1002/nme.1222 |
MR 2120292 |
Zbl 1161.74497
[34] Zhou, M., Zhang, B., Chen, T., Peng, C., Fang, H.:
A three-field dual mortar method for elastic problems with nonconforming mesh. Comput. Methods Appl. Mech. Eng. 362 (2020), Article ID 112870, 24 pages.
DOI 10.1016/j.cma.2020.112870 |
MR 4059410 |
Zbl 1439.74482