Previous |  Up |  Next

Article

Title: An adaptive mesh refinement scheme for hierarchical hybrid grids (English)
Author: Mann, Benjamin
Author: Rüde, Ulrich
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 6
Year: 2025
Pages: 875-905
Summary lang: English
.
Category: math
.
Summary: This work introduces an adaptive mesh refinement technique for hierarchical hybrid grids with the goal to reach scalability and maintain excellent performance on massively parallel computer systems. On the block-structured hierarchical hybrid grids, this is accomplished by using classical, unstructured refinement only on the coarsest level of the hierarchy, while keeping the number of structured refinement levels constant over the whole domain. This leads to a compromise, where the excellent performance characteristics of hierarchical hybrid grids can be maintained at the price that the flexibility of generating locally refined meshes is constrained. Furthermore, the mesh adaptivity often relies on a posteriori error estimators or error indicators, which tend to become computationally expensive. Again, with the goal of preserving scalability and performance, a method is proposed that leverages the grid hierarchy and the full multigrid scheme. Utilizing the sequence of approximations on the nested hierarchy of grids permits the computation of a cheap error estimator that is well-suited for large-scale parallel computing. We present the theoretical foundations for both global and local error estimates, and present a rigorous analysis of their effectivity. The proposed method, including the error estimator and the adaptive coarse grid refinement, is implemented in the finite element framework HyTeG. Extensive numerical experiments are conducted to validate the effectiveness, as well as performance and scalability. (English)
Keyword: adaptive mesh refinement
Keyword: error estimation
Keyword: finite elements
Keyword: geometric multigrid
MSC: 65N50
MSC: 65N55
MSC: 65Y05
DOI: 10.21136/AM.2025.0186-25
.
Date available: 2025-12-20T06:23:14Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153227
.
Reference: [1] Ainsworth, M., Oden, J. T.: A posteriori error estimation in finite element analysis.Comput. Methods Appl. Mech. Eng. 142 (1997), 1-88. Zbl 0895.76040, MR 1442375, 10.1016/S0045-7825(96)01107-3
Reference: [2] Apel, T., Sändig, A.-M., Whiteman, J. R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains.Math. Methods Appl. Sci. 19 (1996), 63-85. Zbl 0838.65109, MR 1365264, 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO;2-S
Reference: [3] Aulisa, E., Ke, G., Lee, S.-Y.: An adaptive mesh refinement strategy for finite element solution of the elliptic problem.Comput. Math. Appl. 76 (2018), 224-244. Zbl 1419.65101, MR 3809435, 10.1016/j.camwa.2018.04.011
Reference: [4] Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the CBS inequality constant.Appl. Math., Praha 49 (2004), 57-72. Zbl 1099.65103, MR 2032148, 10.1023/B:APOM.0000024520.06175.8b
Reference: [5] Babuška, I., Rheinboldt, W. C.: A-posteriori error estimates for the finite element method.Int. J. Numer. Methods Eng. 12 (1978), 1597-1615. Zbl 0396.65068, 10.1002/nme.1620121010
Reference: [6] Babuška, I., Rosenzweig, M. B.: A finite element scheme for domains with corners.Numer. Math. 20 (1972), 1-21. Zbl 0252.65084, MR 0323129, 10.1007/BF01436639
Reference: [7] Babuška, I., Strouboulis, T.: The Finite Element Methods and Its Reliability.Oxford University Press, Oxford (2001). Zbl 0995.65501, MR 1857191, 10.1093/oso/9780198502760.001.0001
Reference: [8] Bai, D., Brandt, A.: Local mesh refinement multilevel techniques.SIAM J. Sci. Stat. Comput. 8 (1987), 109-134. Zbl 0619.65091, MR 0879406, 10.1137/0908025
Reference: [9] Bank, R. E.: PLTMG: A Software Package for Solving Elliptic Partial Differential Equations User's Guide 8.0.Software-Environments-Tools 5. SIAM, Philadelphia (1998). Zbl 0990.65500, MR 1621384, 10.1137/1.9780898719635
Reference: [10] Bank, R. E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations.Math. Comput. 44 (1985), 283-301. Zbl 0569.65079, MR 0777265, 10.2307/2007953
Reference: [11] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods.Acta Numerica 10 (2001), 1-102. Zbl 1105.65349, MR 2009692, 10.1017/S0962492901000010
Reference: [12] Bergen, B. K., Hülsemann, F.: Hierarchical hybrid grids: Data structures and core algorithms for multigrid.Numer. Linear Algebra Appl. 11 (2004), 279-291. Zbl 1164.65517, MR 2065817, 10.1002/nla.382
Reference: [13] Bernert, K.: $\tau$-extrapolation -- Theoretical foundation, numerical experiment, and application to Navier-Stokes equations.SIAM J. Sci. Comput. 18 (1997), 460-478. Zbl 0952.35095, MR 1433789, 10.1137/S1064827594276266
Reference: [14] Bey, J.: Tetrahedral grid refinement.Computing 4 (1995), 355-378. Zbl 0839.65135, MR 1370107, 10.1007/BF02238487
Reference: [15] Blaheta, R.: Nested tetrahedral grids and strengthened C.B.S. inequality.Numer. Linear Algebra Appl. 10 (2003), 619-637. Zbl 1071.65164, MR 2030627, 10.1002/nla.340
Reference: [16] Blaheta, R.: Hierarchical FEM: Strengthened CBS inequalities, error estimates and iterative solvers.Programs and Algorithms of Numerical Mathematics Institute of Mathematics AS CR, Prague (2006), 24-29.
Reference: [17] Böhm, F., Bauer, D., Kohl, N., Alappat, C. L., Thönnes, D., Mohr, M., Köstler, H., Rüde, U.: Code generation and performance engineering for matrix-free finite element methods on hybrid tetrahedral grids.SIAM J. Sci. Comput. 47 (2025), B131--B159. Zbl 1563.65225, MR 4856616, 10.1137/24M1653756
Reference: [18] Brandt, A.: Multi-level adaptive techniques (MLAT) for partial differential equations: Ideas and software.Mathematical Software III Academic Press, New York (1977), 277-318. Zbl 0407.68037, MR 0474858, 10.1016/B978-0-12-587260-7.50015-7
Reference: [19] Buttari, A., Huber, M., Leleux, P., Mary, T., Rüde, U., Wohlmuth, B.: Block low-rank single precision coarse grid solvers for extreme scale multigrid methods.Numer. Linear Algebra Appl. 29 (2022), Article ID e2407, 15 pages. Zbl 1538.65583, MR 4372443, 10.1002/nla.2407
Reference: [20] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Classics in Applied Mathematics. SIAM, Philadelphia (2002). Zbl 0999.65129, MR 1930132, 10.1137/1.9780898719208
Reference: [21] Dostál, Z., Horák, D., Kružík, J., Brzobohatý, T., Vlach, O.: Highly scalable hybrid domain decomposition method for the solution of huge scalar variational inequalities.Numer. Algorithms 91 (2022), 773-801. Zbl 1502.65198, MR 4480269, 10.1007/s11075-022-01281-3
Reference: [22] Egger, H., Rüde, U., Wohlmuth, B.: Energy-corrected finite element methods for corner singularities.SIAM J. Numer. Anal. 52 (2014), 171-193. Zbl 1293.65150, MR 3154149, 10.1137/120871377
Reference: [23] Elman, H. C.: Multigrid and Krylov subspace methods for the discrete Stokes equations.Int. J. Numer. Methods Fluids 22 (1996), 755-770. Zbl 0865.76078, 10.1002/(SICI)1097-0363(19960430)22:8<755::AID-FLD377>3.0.CO;2-1
Reference: [24] Ferraz-Leite, S., Ortner, C., Praetorius, D.: Convergence of simple adaptive Galerkin schemes based on $h-h/2$ error estimators.Numer. Math. 116 (2010), 291-316. Zbl 1198.65213, MR 2672266, 10.1007/s00211-010-0292-9
Reference: [25] Fung, F., Stals, L., Deng, Q.: Fault-tolerant parallel multigrid method on unstructured adaptive mesh.SIAM J. Sci. Comput. 46 (2024), S145--S169. Zbl 07931243, MR 4813195, 10.1137/23M1582904
Reference: [26] Gmeiner, B., Huber, M., John, L., Rüde, U., Wohlmuth, B.: A quantitative performance study for Stokes solvers at the extreme scale.J. Comput. Sci. 17 (2016), 509-521. MR 3580776, 10.1016/j.jocs.2016.06.006
Reference: [27] Gmeiner, B., Köstler, H., Stürmer, M., Rüde, U.: Parallel multigrid on hierarchical hybrid grids: A performance study on current high performance computing clusters.Concurrency Comput. Pract. Exp. 26 (2014), 217-240. 10.1002/cpe.2968
Reference: [28] Gradl, T.: Data Structures and Algorithms for the Optimization of Hierarchical Hybrid Multigrid Methods: Ph.D. Thesis.Friedrich-Alexander-Universität, Erlangen (2015).
Reference: [29] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Classics in Applied Mathematics 69. SIAM, Philadelphia (2011). Zbl 1231.35002, MR 3396210, 10.1137/1.9781611972030
Reference: [30] Hairer, E., Nørsett, S. P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems.Springer Series in Computational Mathematics 8. Springer, Berlin (1993). Zbl 0789.65048, MR 1227985, 10.1007/978-3-540-78862-1
Reference: [31] Hapla, V., Horak, D., Pospisil, L., Cermak, M., Vasatova, A., Sojka, R.: Solving contact mechanics problems with PERMON.High Performance Computing in Science and Engineering Lecture Notes in Computer Science 9611. Springer, Cham (2015), 101-115. Zbl 1382.74004, 10.1007/978-3-319-40361-8_7
Reference: [32] Kohl, N., Bauer, D., Böhm, F., Rüde, U.: Fundamental data structures for matrix-free finite elements on hybrid tetrahedral grids.Int. J. Parallel Emergent Distrib. Syst. 39 (2024), 51-74. 10.1080/17445760.2023.2266875
Reference: [33] Kohl, N., Rüde, U.: Textbook efficiency: Massively parallel matrix-free multigrid for the Stokes system.SIAM J. Sci. Comput. 44 (2022), C124--C155. Zbl 1492.65080, MR 4404469, 10.1137/20M1376005
Reference: [34] Kohl, N., Thönnes, D., Drzisga, D., Bartuschat, D., Rüde, U.: The $HyTeG$ finite-element software framework for scalable multigrid solvers.Int. J. Parallel Emergent Distrib. Syst. 34 (2019), 477-496. 10.1080/17445760.2018.1506453
Reference: [35] Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application.Comput. Fluids 63 (2012), 135-147. Zbl 1365.76121, MR 2982707, 10.1016/j.compfluid.2012.04.012
Reference: [36] Kühn, M. J., Kruse, C., Rüde, U.: Energy-minimizing, symmetric discretizations for anisotropic meshes and energy functional extrapolation.SIAM J. Sci. Comput. 43 (2021), A2448--A2473. Zbl 1486.65225, MR 4284417, 10.1137/21M1397520
Reference: [37] Kühn, M. J., Kruse, C., Rüde, U.: Implicitly extrapolated geometric multigrid on disk-like domains for the gyrokinetic Poisson equation from fusion plasma applications.J. Sci. Comput. 91 (2022), Article ID 28, 27 pages. Zbl 1490.65305, MR 4393121, 10.1007/s10915-022-01802-1
Reference: [38] Leleux, P., Schwarz, C., Kühn, M. J., Kruse, C., Rüde, U.: Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver for curvilinear coordinates representations from fusion plasma applications.J. Parallel Distrib. Comput. 205 (2025), Article ID 105143, 31 pages. 10.1016/j.jpdc.2025.105143
Reference: [39] Luce, R., Wohlmuth, B. I.: A local a posteriori error estimator based on equilibrated fluxes.SIAM J. Numer. Anal. 42 (2004), 1394-1414. Zbl 1078.65097, MR 2114283, 10.1137/S0036142903433790
Reference: [40] Mayr, M., Berger-Vergiat, L., Ohm, P., Tuminaro, R. S.: Noninvasive multigrid for semistructured grids.SIAM J. Sci. Comput. 44 (2022), A2734--A2764. Zbl 1507.65278, MR 4474385, 10.1137/20M1375413
Reference: [41] McCormick, S. F., Thomas, J.: The fast adaptive composite grid (FAC) method for elliptic equations.Math. Comput. 46 (1986), 439-456. Zbl 0594.65078, MR 0829618, 10.1090/S0025-5718-1986-0829618-X
Reference: [42] McCorquodale, P., Colella, P., Grote, D. P., Vay, J.-L.: A node-centered local refinement algorithm for Poisson's equation in complex geometries.J. Comput. Phys. 201 (2004), 34-60. Zbl 1059.65094, MR 2098852, 10.1016/j.jcp.2004.04.022
Reference: [43] Munch, P., Heister, T., Saavedra, L. Prieto, Kronbichler, M.: Efficient distributed matrix-free multigrid methods on locally refined meshes for FEM computations.ACM Trans. Parallel Comput. 10 (2023), Article ID 3, 38 pages. MR 4573597, 10.1145/3580314
Reference: [44] Papež, J., Rüde, U., Vohralík, M., Wohlmuth, B.: Sharp algebraic and total a posteriori error bounds for $h$ and $p$ finite elements via a multilevel approach: Recovering mass balance in any situation.Comput. Methods Appl. Mech. Eng. 371 (2020), Article ID 113243, 39 pages. Zbl 1506.76097, MR 4142137, 10.1016/j.cma.2020.113243
Reference: [45] Richter, T. M.: Goal-oriented error estimation for fluid-structure interaction problems.Comput. Methods Appl. Mech. Eng. 223-224 (2012), 28-42. Zbl 1253.74037, MR 2917479, 10.1016/j.cma.2012.02.014
Reference: [46] Stals, L.: Adaptive multigrid in parallel.Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing. Volume 2 IEEE, Piscataway (1995), 792-795. 10.1109/ICAPP.1995.472269
Reference: [47] Stals, L.: Parallel Multigrid On Unstructured Grids Using Adaptive Finite Element Methods: Ph.D. Thesis.Australian National University, Camberra (1995). 10.25911/5d6e4e221442f
Reference: [48] Strang, G., Fix, G. J.: An Analysis of the Finite Element Methods.Wellesley-Cambridge Press, Wellesley (2008). Zbl 1171.65081, MR 2743037
Reference: [49] Trottenberg, U., Oosterlee, C. W., Schüller, A.: Multigrid.Academic Press, New York (2000). Zbl 0976.65106, MR 1807961
Reference: [50] Tufo, H. M., Fischer, P. F.: Fast parallel direct solvers for coarse grid problems.J. Parallel Distrib. Comput. 61 (2001), 151-177. Zbl 0972.68191, 10.1006/jpdc.2000.1676
Reference: [51] Vacek, P., Carson, E., Soodhalter, K. M.: The effect of approximate coarsest-level solves on the convergence of multigrid V-cycle methods.SIAM J. Sci. Comput. 46 (2024), A2634--A2659. Zbl 1545.65148, MR 4784859, 10.1137/23M1578255
Reference: [52] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques.Wiley-Teubner Series Advances in Numerical Mathematics. John Wiley & Sons, Chichester (1996). Zbl 0853.65108
Reference: [53] Zenger, C., Gietl, H.: Improved difference schemes for the Dirichlet problem of Poisson's equation in the neighbourhood of corners.Numer. Math. 30 (1978), 315-332. Zbl 0425.65054, MR 0502024, 10.1007/BF01411846
Reference: [54] al., W. Zhang et: AMReX: A framework for block-structured adaptive mesh refinement.J. Open Source Soft. 4 (2019), Article ID 1370. 10.21105/joss.01370
Reference: [55] Zienkiewicz, O. C., Zhu, J. Z.: A simple error estimator and adaptive procedure for practical engineering analysis.Int. J. Numer. Methods Eng. 24 (1987), 337-357. Zbl 0602.73063, MR 0875306, 10.1002/nme.1620240206
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo