Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
lattice of subgroup; lattice of weak congruence; special element in lattice; class of group
Summary:
Classes of groups are identified and characterized in lattice-theoretic terms, i.e., by common properties of the weak congruence lattices of groups in the class. In particular, the necessary and sufficient condition for a class of groups to be a variety has been given in terms of the lattice of weak congruences of groups.
References:
[1] Ballester-Bolinches, A., Ezquerro, L. M.: Classes of Finite Groups. Mathematics and Its Applications 584. Springer, Dordrecht (2006). DOI 10.1007/1-4020-4719-3 | MR 2241927 | Zbl 1102.20016
[2] Czédli, G., Erné, M., Šešelja, B., Tepavčević, A.: Characteristic triangles of closure operators with applications in general algebra. Algebra Univers. 62 (2009), 399-418. DOI 10.1007/s00012-010-0059-2 | MR 2670173 | Zbl 1209.08001
[3] Czédli, G., Šešelja, B., Tepavčević, A.: On the semidistributivity of elements in weak congruence lattices of algebras and groups. Algebra Univers. 58 (2008), 349-355. DOI 10.1007/s00012-008-2076-y | MR 2415286 | Zbl 1144.08002
[4] Gong, L., Chen, Q., Li, B.: On cyclic actions of finite groups. Mediterr. J. Math. 21 (2024), Article ID 83, 23 pages. DOI 10.1007/s00009-024-02626-z | MR 4725288 | Zbl 1550.20019
[5] Grätzer, G.: General Lattice Theory. Birkhäuser, Basel (2003). DOI 10.1007/978-3-0348-7633-9 | MR 2451139 | Zbl 1152.06300
[6] Grulović, M., Jovanović, J., Šešelja, B., Tepavčević, A.: Lattice characterization of some classes of groups by series of subgroups. Int. J. Algebra Comput. 33 (2023), 211-235. DOI 10.1142/S0218196723500121 | MR 4581207 | Zbl 1521.20056
[7] M. Hall, Jr.: The Theory of Groups. Dover Books on Mathematics. Dover, New York (2018). MR 1635901 | Zbl 1381.20002
[8] Jovanović, J., Šešelja, B., Tepavčević, A.: Lattice characterization of finite nilpotent groups. Algebra Univers. 82 (2021), Article ID 40, 14 pages. DOI 10.1007/s00012-021-00716-7 | MR 4264084 | Zbl 1503.20004
[9] Jovanović, J., Šešelja, B., Tepavčević, A.: Lattices with normal elements. Algebra Univers. 83 (2022), Article ID 2, 28 pages. DOI 10.1007/s00012-021-00759-w | MR 4346486 | Zbl 1515.20110
[10] Jovanović, J., Šešelja, B., Tepavčević, A.: Nilpotent groups in lattice framework. Algebra Univers. 85 (2024), Article ID 40, 9 pages. DOI 10.1007/s00012-024-00873-5 | MR 4800674 | Zbl 1550.20052
[11] Obraztsov, N. V.: Simple torsion-free groups in which the intersection of any two non-trivial subgroups is non-trivial. J. Algebra 199 (1998), 337-343. DOI 10.1006/jabr.1997.7185 | MR 1489368 | Zbl 0898.20017
[12] Ol'shanskii, A. Y.: An infinite group with subgroups of prime orders. Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1980), 309-321 Russian. DOI 10.1070/IM1981v016n02ABEH001307 | MR 0571100 | Zbl 0475.20025
[13] Ol'shanskii, A. Y.: Geometry of Defining Relations in Groups. Mathematics and Its Applications. Soviet Series 70. Kluwer Academic, Dordrecht (1991). DOI 10.1007/978-94-011-3618-1 | MR 1191619 | Zbl 0732.20019
[14] Pálfy, P. P.: Groups and lattices. Groups St. Andrews 2001 in Oxford. Vol. II London Mathematical Society Lecture Note Series 305. Cambridge University Press, Cambridge (2003), 428-454. DOI 10.1017/CBO9780511542787.014 | MR 2051548 | Zbl 1085.20508
[15] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part I. Ergebnisse der Mathematik und ihrer Grenzgebiete 62. Springer, Berlin (1972). MR 0332989 | Zbl 0243.20032
[16] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1996). DOI 10.1007/978-1-4419-8594-1 | MR 1357169 | Zbl 0836.20001
[17] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14. Walter de Gruyter, Berlin (1994). DOI 10.1515/9783110868647 | MR 1292462 | Zbl 0843.20003
[18] Šešelja, B., Tepavčević, A.: On CEP and semimodularity in the lattice of weak congruences. Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu, Ser. Mat. 22 (1992), 95-106. MR 1295228 | Zbl 0804.08001
[19] Šešelja, B., Tepavčević, A.: Weak Congruences in Universal Algebra. Institute of Mathematics, Novi Sad (2001). MR 1878678 | Zbl 1083.08500
[20] Suzuki, M.: Structure of a Group and the Structure of its Lattice of Subgroups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge 10. Springer, Berlin (1956). DOI 10.1007/978-3-642-52758-6 | MR 0083487 | Zbl 0070.25406
[21] Traustason, G.: CIP-groups. Arch. Math. 65 (1995), 97-102. DOI 10.1007/BF01270684 | MR 1338238 | Zbl 0829.20041
[22] Vojvodić, G., Šešelja, B.: A note on the modularity of the lattice of weak congruences of a finite group. Contributions to General Algebra 5 Hölder-Pichler-Tempsky, Vienna (1987), 415-419. MR 0930939 | Zbl 0639.08003
[23] Vojvodić, G., Šešelja, B.: On the lattice of weak congruence relations. Algebra Univers. 25 (1988), 121-130. DOI 10.1007/BF01229965 | MR 0950740 | Zbl 0657.08002
Partner of
EuDML logo