| Title: | A note on nontrivial acting functions for homogeneous Besov and Triebel-Lizorkin spaces (English) |
| Author: | Moussai, Madani |
| Language: | English |
| Journal: | Czechoslovak Mathematical Journal |
| ISSN: | 0011-4642 (print) |
| ISSN: | 1572-9141 (online) |
| Volume: | 75 |
| Issue: | 4 |
| Year: | 2025 |
| Pages: | 1333-1345 |
| Summary lang: | English |
| . | |
| Category: | math |
| . | |
| Summary: | We prove the acting by composition of nontrivial functions $f \colon \mathbb {R} \to \mathbb {R}$ (i.e., ${T_f \colon g\to f\circ g}$) on homogeneous Besov and Triebel-Lizorkin spaces realized as subspaces of ${\mathcal S}'(\mathbb {R}^n)$ in case $s=n/p<1+1/p$, and $q>1$ (Besov space) and $p>1$ (Triebel-Lizorkin space). These subspaces are dilation invariant and endowed with quasi-seminorms such that $\|g\|=0$ if and only if $g$ is constant. (English) |
| Keyword: | composition operator |
| Keyword: | homogeneous Besov space |
| Keyword: | homogeneous Triebel-Lizorkin space |
| Keyword: | realization |
| MSC: | 46E35 |
| MSC: | 47H30 |
| DOI: | 10.21136/CMJ.2025.0116-25 |
| . | |
| Date available: | 2025-12-20T07:50:01Z |
| Last updated: | 2025-12-22 |
| Stable URL: | http://hdl.handle.net/10338.dmlcz/153246 |
| . | |
| Reference: | [1] Bourdaud, G.: Realizations of homogeneous Besov and Lizorkin-Triebel spaces.Math. Nachr. 286 (2013), 476-491. Zbl 1270.46027, MR 3048126, 10.1002/mana.201100151 |
| Reference: | [2] Bourdaud, G., Cristoforis, M. Lanza de, Sickel, W.: Superposition operators and functions of bounded $p$-variation.Rev. Mat. Iberoam. 22 (2006), 455-487. Zbl 1134.46015, MR 2294787, 10.4171/rmi/463 |
| Reference: | [3] Bourdaud, G., Meyer, Y.: Le calcul fonctionnel sous-linéaire dans les espaces de Besov homogènes.Rev. Mat. Iberoam. 22 (2006), 725-746 French. Zbl 1142.46014, MR 2294796, 10.4171/rmi/472 |
| Reference: | [4] Bourdaud, G., Moussai, M.: Dahlberg degeneracy for homogeneous Besov and Triebel- Lizorkin spaces.Math. Nachr. 297 (2024), 878-894. Zbl 1548.46026, MR 4720189, 10.1002/mana.202300117 |
| Reference: | [5] Bourdaud, G., Moussai, M., Sickel, W.: Composition operators on Lizorkin-Triebel spaces.J. Funct. Anal. 259 (2010), 1098-1128. Zbl 1219.47092, MR 2652183, 10.1016/j.jfa.2010.04.008 |
| Reference: | [6] Franke, J.: On the spaces $F^{s}_{pq}$ of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains.Math. Nachr. 125 (1986), 29-68. Zbl 0617.46036, MR 0847350, 10.1002/mana.19861250104 |
| Reference: | [7] Giusti, E.: Minimal Surfaces and Functions of Bounded Variation.Monographs in Mathematics 80. Birkhäuser, Basel (1984). Zbl 0545.49018, MR 0775682, 10.1007/978-1-4684-9486-0 |
| Reference: | [8] Jawerth, B.: Some observations on Besov and Lizorkin-Triebel spaces.Math. Scand. 40 (1977), 94-104. Zbl 0358.46023, MR 0454618, 10.7146/math.scand.a-11678 |
| Reference: | [9] Moussai, M.: Composition operators on Besov algebras.Rev. Mat. Iberoam. 28 (2012), 239-272 \99999DOI99999 10.4171/rmi/676 . Zbl 1238.47040, MR 2904140, 10.4171/rmi/676 |
| Reference: | [10] Moussai, M.: Realizations of homogeneous Besov and Triebel-Lizorkin spaces and an application to pointwise multipliers.Anal. Appl., Singap. 13 (2015), 149-183. Zbl 1348.46039, MR 3319662, 10.1142/S0219530514500250 |
| Reference: | [11] Moussai, M.: Characterizations of realized homogeneous Besov and Triebel-Lizorkin spaces via differences.Appl. Math., Ser. B (Engl. Ed.) 33 (2018), 188-208. Zbl 1399.46047, MR 3813030, 10.1007/s11766-018-3431-1 |
| Reference: | [12] Moussai, M.: Composition operators on Besov spaces in the limiting case $s=1+1/p$.Stud. Math. 241 (2018), 1-15. Zbl 1415.46024, MR 3732927, 10.4064/sm8136-4-2017 |
| Reference: | [13] Runst, T.: Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type.Anal. Math. 12 (1986), 313-346. Zbl 0644.46022, MR 0877164, 10.1007/BF01909369 |
| Reference: | [14] Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations.de Gruyter Series in Nonlinear Analysis and Applications 3. Walter de Gruyter, Berlin (1996). Zbl 0873.35001, MR 1419319, 10.1515/9783110812411 |
| Reference: | [15] Triebel, H.: Theory of Function Spaces II.Monographs in Mathematics 84. Birkhäuser, Basel (1992). Zbl 0763.46025, MR 1163193, 10.1007/978-3-0346-0419-2 |
| . |
Fulltext not available (moving wall 24 months)