Previous |  Up |  Next

Article

Title: Lie $H$-pseudoalgebras with Rota-Baxter $H$-operators (English)
Author: Gai, Botong
Author: Wang, Shuanhong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1361-1391
Summary lang: English
.
Category: math
.
Summary: A Lie conformal algebra $L$ is defined as a $\mathbb {C}[\partial ]$-module ($\partial $ is an indeterminate), endowed with a $\mathbb {C}$-linear map $L\otimes L\rightarrow \mathbb {C}[\lambda ]\otimes L$, $a\otimes b\rightarrow [a_{\lambda }b]$ satisfying axioms similar to those of Lie algebra. Then Bakalov, D'Andrea and Kac introduced the notion of Lie $H$-pseudoalgebras by replacing the above polynomial algebra $\mathbb {C}[\partial ]$ with any cocommutative Hopf algebra $H$. We first classify solvable Lie $H$-pseudoalgebras of rank two. Then we consider the Rota-Baxter $H$-operators on such Lie $H$-pseudoalgebras. Finally, we study the relationship between Rota-Baxter $H$-operators on Lie $H$-pseudoalgebra and Rota-Baxter operators on its annihilation algebra. (English)
Keyword: Hopf algebra
Keyword: Lie $H$-pseudoalgebra
Keyword: universal enveloping algebra
Keyword: Rota-Baxter $H$-operator
Keyword: annihilation algebra
MSC: 16T05
MSC: 17B05
MSC: 17B30
DOI: 10.21136/CMJ.2025.0169-25
.
Date available: 2025-12-20T07:50:54Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153248
.
Reference: [1] Apel, J., Lassner, W.: An extension of Buchberger's algorithm and calculations in enveloping fields of Lie algebras.J. Symb. Comput. 6 (1988), 361-370. Zbl 0663.68044, MR 0988423, 10.1016/S0747-7171(88)80053-1
Reference: [2] Bakalov, B., D'Andrea, A., Kac, V. G.: Theory of finite pseudoalgebras.Adv. Math. 162 (2001), 1-140. Zbl 1001.16021, MR 1849687, 10.1006/aima.2001.1993
Reference: [3] Bakalov, B., D'Andrea, A., Kac, V. G.: Irreducible modules over finite simple Lie pseudoalgebras. I. Primitive pseudoalgebras of type $W$ and $S$.Adv. Math. 204 (2006), 278-346. Zbl 1104.17006, MR 2233135, 10.1016/j.aim.2005.07.003
Reference: [4] Bakalov, B., D'Andrea, A., Kac, V. G.: Irreducible modules over finite simple Lie pseudoalgebras. II. Primitive pseudoalgebras of type $K$.Adv. Math. 232 (2013), 188-237. Zbl 1287.17051, MR 2989981, 10.1016/j.aim.2012.09.012
Reference: [5] Bakalov, B., D'Andrea, A., Kac, V. G.: Irreducible modules over finite simple Lie pseudoalgebras. III. Primitive pseudoalgebras of type $H$.Adv. Math. 392 (2021), Article ID 107963, 81 pages. Zbl 1511.17067, MR 4312857, 10.1016/j.aim.2021.107963
Reference: [6] Bakalov, B., Kac, V. G., Voronov, A. A.: Cohomology of conformal algebras.Commun. Math. Phys. 200 (1999), 561-598. Zbl 0959.17018, MR 1675121, 10.1007/s002200050541
Reference: [7] Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity.Pac. J. Math. 10 (1960), 731-742. Zbl 0095.12705, MR 0119224, 10.2140/pjm.1960.10.731
Reference: [8] Beilinson, A., Drinfeld, V.: Chiral Algebras.American Mathematical Society Colloquium Publications 51. AMS, Providence (2004). Zbl 1138.17300, MR 2058353, 10.1090/coll/051
Reference: [9] Biswal, R., Chakhar, A., He, X.: Classification of rank two Lie conformal algebras.J. Ramanujan Math. Soc. 36 (2021), 203-219. Zbl 1518.17027, MR 4328134
Reference: [10] Boyallian, C., Liberati, J. I.: On pseudo-bialgebras.J. Algebra 372 (2012), 1-34. Zbl 1290.17017, MR 2989998, 10.1016/j.jalgebra.2012.08.009
Reference: [11] D'Andrea, A.: Irreducible modules over finite simple Lie pseudoalgebras. IV. Non-primitive pseudoalgebras.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24 (2023), 97-140. Zbl 1521.17089, MR 4587742, 10.2422/2036-2145.202109_003
Reference: [12] D'Andrea, A., Kac, V. G.: Structure theory of finite conformal algebras.Sel. Math., New Ser. 4 (1998), 377-418. Zbl 0918.17019, MR 1654574, 10.1007/s000290050036
Reference: [13] Dixmier, J.: Enveloping Algebras.Graduate Studies in Mathematics 11. AMS, Providence (1996). Zbl 0867.17001, MR 1393197, 10.1090/gsm/011
Reference: [14] Dorfman, I. Y.: Dirac structures and integrability of nonlinear evolution equations.Nonlinear Evolution Equations: Integrability and Spectral Methods John Wiley & Sons, Chichester (1993). Zbl 0717.58026, MR 1237398
Reference: [15] Gai, B., Wang, S.: On Heisenberg-Virasoro pseudoalgebras.J. Math. Phys. 66 (2025), Article ID 021703, 18 pages. Zbl 07993787, MR 4866340, 10.1063/5.0232329
Reference: [16] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and infinite-dimensional Lie algebra.Funct. Anal. Appl. 15 (1981), 173-187. Zbl 0478.58013, MR 0630337, 10.1007/BF01089922
Reference: [17] Gel'fand, I. M., Dorfman, I. Y.: Hamiltonian operators and the classical Yang-Baxter equation.Funct. Anal. Appl. 16 (1982), 241-248. Zbl 0527.58018, MR 0684122, 10.1007/BF01077846
Reference: [18] Goodearl, K. R., Yakimov, M. T.: From quantum Ore extensions to quantum tori via noncommutative UFDs.Adv. Math. 300 (2016), 672-716. Zbl 1352.16037, MR 3534843, 10.1016/j.aim.2016.03.029
Reference: [19] Guo, L.: An Introduction to Rota-Baxter Algebra.Surveys of Modern Mathematics 4. International Press, Beijing (2012). Zbl 1271.16001, MR 3025028
Reference: [20] Kac, V. G.: Vertex Algebras for Beginners.University Lecture Series 10. AMS, Providence (1997). Zbl 0861.17017, MR 1417941, 10.1090/ulect/010
Reference: [21] Lambek, J.: Deductive systems and categories. II. Standard constructions and closed categories.Category Theory, Homology Theory and their Applications. I Lecture Notes in Mathematics 86. Springer, Berlin (1969), 76-122. Zbl 0198.33701, MR 0242637, 10.1007/BFb0079385
Reference: [22] Liu, L., Wang, S.: Rota-Baxter $H$-operators and pre-Lie $H$-pseudoalgebras over a cocommutative Hopf algebra $H$.Linear Multilinear Algebra 68 (2020), 2170-2184. Zbl 1455.16028, MR 4170203, 10.1080/03081087.2019.1572710
Reference: [23] Lopes, S. A.: Noncommutative algebra and representation theory: Symmetry, structure & invariants.Commun. Math. 32 (2024), 63-117. Zbl 07900716, MR 4683664, 10.46298/cm.11678
Reference: [24] Ma, T., Liu, L.: Rota-Baxter coalgebras and Rota-Baxter bialgebras.Linear Multilinear Algebra 64 (2016), 968-979. Zbl 1355.16036, MR 3479395, 10.1080/03081087.2015.1068269
Reference: [25] Pei, J., Guo, L.: Averaging algebras, Schröder numbers, rooted trees and operads.J. Algebr. Comb. 42 (2015), 73-109. Zbl 1332.05153, MR 3365594, 10.1007/s10801-014-0574-x
Reference: [26] Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion.Proc. Roy. Soc. Lond., Ser. A 451 (1995), 5-47. MR 1363190, 10.1098/rspa.1995.0118
Reference: [27] Rota, G.-C.: Baxter algebras and combinatorial identities. I.Bull. Amer. Math. Soc. 75 (1969), 325-329. Zbl 0192.33801, MR 0244070, 10.1090/S0002-9904-1969-12156-7
Reference: [28] Rota, G.-C.: Baxter algebras and combinatorial identities. II.Bull. Amer. Math. Soc. 75 (1969), 330-334. Zbl 0319.05008, MR 0244070, 10.1090/S0002-9904-1969-12158-0
Reference: [29] Sun, Q., Wu, Z.: Theory structure of $n$-Lie $H$-pseudoalgebras.J. Phys. A, Math. Theor. 43 (2010), Article ID 275201, 17 pages. Zbl 1241.17005, MR 2658278, 10.1088/1751-8113/43/27/275201
Reference: [30] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [31] Daele, A. Van: Multiplier Hopf algebras.Trans. Am. Math. Soc. 342 (1994), 917-932. Zbl 0809.16047, MR 1220906, 10.1090/S0002-9947-1994-1220906-5
Reference: [32] Wu, Z. X.: Leibniz conformal algebras of rank two.Acta Math. Sin., Engl. Ser. 36 (2020), 109-120. Zbl 1486.17005, MR 4046995, 10.1007/s10114-020-9057-2
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo