Previous |  Up |  Next

Article

Title: $n$-submodules of modules over commutative rings (English)
Author: Karimzadeh, Somayeh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1411-1429
Summary lang: English
.
Category: math
.
Summary: We explore the existence of $ n $-submodules in the context of module theory. Then we generalize our results by considering an additive, left-exact functor $F$ defined on the category of modules, which is either covariant or contravariant, and preserves multiplications. Within this broader framework, we identify and characterize an $n$-submodule of $F(M)$, derived from the structure of $M$ and the action of the functor $F$. (English)
Keyword: $n$-submodule
Keyword: secondary module
Keyword: functor
Keyword: category
MSC: 13C99
MSC: 13Cxx
MSC: 18C40
DOI: 10.21136/CMJ.2025.0252-25
.
Date available: 2025-12-20T07:57:55Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153250
.
Reference: [1] Ahmadi, M., Moghaderi, J.: $n$-submodules.Iran. J. Math. Sci. Inform. 17 (2022), 177-190. Zbl 1489.13016, MR 4411831
Reference: [2] Barnard, A.: Multiplication modules.J. Algebra 71 (1981), 174-178. Zbl 0468.13011, MR 0627431, 10.1016/0021-8693(81)90112-5
Reference: [3] El-Bast, Z. A., Smith, P. F.: Multiplication modules.Commun. Algebra 16 (1988), 755-779. Zbl 0642.13002, MR 0932633, 10.1080/00927878808823601
Reference: [4] Karimzadeh, S., Moghaderi, J.: On $n$-submodules and $G.n$-submodules.Czech. Math. J. 73 (2023), 245-262. Zbl 07655766, MR 4541100, 10.21136/CMJ.2022.0094-22
Reference: [5] Macdonald, I. G.: Secondary representation of modules over a commutative ring.Symposia Mathematica. Vol. XI Academic Press, London (1973), 23-43. Zbl 0271.13001, MR 0342506
Reference: [6] Pakyari, N., Nekooei, R., Rostami, E.: On secondary and representable modules over almost Dedekind domains.Commun. Algebra 48 (2020), 3891-3903. Zbl 1446.13007, MR 4124667, 10.1080/00927872.2020.1750622
Reference: [7] Prest, M.: Definable Additive Categories: Purity and Model Theory.Memoirs of the American Mathematical Society 987. AMS, Providence (2011). Zbl 1229.03034, MR 2791358, 10.1090/S0065-9266-2010-00593-3
Reference: [8] Rotman, J. J.: An Introduction to Homological Algebra.Universitext. Springer, Berlin (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977
Reference: [9] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings.Filomat 31 (2017), 2933-2941. Zbl 1488.13016, MR 3639382, 10.2298/FIL1710933T
Reference: [10] Weibel, C. A.: An Introduction to Homological Algebra.Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge (1994). Zbl 0834.18001, MR 1269324, 10.1017/CBO9781139644136
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo