Previous |  Up |  Next

Article

Title: On the conformal theory of Ichijyō manifolds (English)
Author: Szakál, Sz.
Language: English
Journal: Proceedings of the 21st Winter School "Geometry and Physics"
Volume:
Issue: 2001
Year:
Pages: [245]-254
.
Category: math
.
Summary: Some special linear connection introduced in the Finsler space by Ichijy\=o has the property that the curvature tensors under conformal changes remain invariant. Two Ichijy\=o manifolds $(M,E,\nabla)$ and $(M,\overline E,\overline\nabla)$ are said to be conformally equivalent if $\overline E= (\exp\sigma^v)E$, $\sigma\in C^\infty(M)$.\par It is proved, that in this case, the following assertions are equivalent: 1. $\sigma$ is constant, 2. $h_\nabla= h_{\overline\nabla}$, 3. $S_{\nabla}= S_{\overline\nabla}$, 4. $t_\nabla= t_{\overline\nabla}$.\par It is also proved (when the above conditions are satisfied) that\par 1. If $(M,E,\nabla)$ is a generalized Berwald manifold, then $(M,\overline E,\overline\nabla)$ is also a generalized Berwald manifold.\par 2. If $(M,E,\nabla)$ is a Wagner manifold, then $(M,\overline E,\overline\nabla)$ is also a Wagner manifold with $\overline\alpha= \alpha+{1\over 2} \sigma$.\par A new proof of M. Hashiguchi's and Y. Ichijy\=o's theo! (English)
MSC: 53C05
MSC: 53C60
idZBL: Zbl 1021.53048
idMR: MR1972439
.
Date available: 2009-07-18T21:20:13Z
Last updated: 2012-09-18
Stable URL: http://hdl.handle.net/10338.dmlcz/702142
.

Files

Files Size Format View
WSGP_21-2001-1_20.pdf 653.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo