Title:
|
Poincaré–Sobolev and isoperimetric inequalities, maximal functions, and half-space estimates for the gradient (English) |
Author:
|
Wheeden, Richard L. |
Language:
|
English |
Journal:
|
Nonlinear Analysis, Function Spaces and Applications |
Volume:
|
Vol. 5 |
Issue:
|
1994 |
Year:
|
|
Pages:
|
231-265 |
. |
Category:
|
math |
. |
MSC:
|
26D15 |
MSC:
|
42B25 |
MSC:
|
46E35 |
idZBL:
|
Zbl 0831.46032 |
idMR:
|
MR1322314 |
. |
Date available:
|
2009-10-08T09:45:45Z |
Last updated:
|
2012-08-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/702450 |
. |
Reference:
|
[A] Adams, D. R.: A trace inequality for generalized potentials.Studia Math. 48 (1973), 99–105. Zbl 0237.46037, MR 0336316 |
Reference:
|
[Ca] Calderón, C. P.: Differentiation through starlike sets in $\mathcal{R}^n$.Studia Math. 48 (1973), 1–13. MR 0330395 |
Reference:
|
[Ch] Christ, M.: Weak type $(1,1)$ bounds for rough operators.Ann. of Math. 128 (1988), 19–42. Zbl 0695.47052, MR 0951506 |
Reference:
|
[ChR] Christ, M., Francia, J. L. Rubio de: Weak type $(1,1)$ bounds for rough operators, II.Invent. Math. 93 (1988), 225–237. MR 0943929 |
Reference:
|
[CKN] Caffarelli, L., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights.Compositio Math. 53 (1984), 259–275. Zbl 0563.46024, MR 0768824 |
Reference:
|
[Cor] Córdoba, A.: Maximal functions, covering lemmas and Fourier multipliers.Proc. Sympos. Pure Math vol. 35, Amer. Math. Soc., 1979, p. 29–50. MR 0545237 |
Reference:
|
[CW1] Chanillo, S., Wheeden, R. L.: Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions.Amer. J. Math. 107 (1985), 1191–1226. Zbl 0575.42026, MR 0805809 |
Reference:
|
[CW2] Chanillo, S., Wheeden, R. L.: $L^p$ estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators.Comm. Partial Differential Equations 10 (1985), 1077–1116. MR 0806256 |
Reference:
|
[CW3] Chanillo, S., Wheeden, R. L.: Poincaré inequalities for a class of non-$A_p$ weights.Indiana Univ. Math. J. 41 (1992), 605–623. MR 1189903 |
Reference:
|
[CWaW] Chanillo, S., Watson, D. K., Wheeden, R. L.: Some integral and maximal operators related to starlike sets.Studia Math. 107 (1993), 223–255. Zbl 0809.42008, MR 1247201 |
Reference:
|
[CWiWo] Chang, S. Y. A., Wilson, J. M., Wolff, T. H.: Some weighted norm inequalities concerning the Schrödinger operators.Comment. Math. Helv. 60 (1985), 217–246. Zbl 0575.42025, MR 0800004 |
Reference:
|
[DS] David, G., Semmes, S.: Strong $A_\infty $ weights, Sobolev inequalities and quasiconformal mappings.Analysis and Partial Differential Equations, Lecture Notes in Math. vol. 242, Springer-Verlag, 1971, p. 1–158. |
Reference:
|
[F] Federer, H.: Geometric Measure Theory.Springer-Verlag, New York, 1969. Zbl 0176.00801, MR 0257325 |
Reference:
|
[FGaW] Franchi, B., Gallot, S., Wheeden, R. L.: Sobolev and isoperimetric inequalities for degenerate metrics.Math. Ann. (to appear). Zbl 0830.46027, MR 1314734 |
Reference:
|
[FGuW] Franchi, B., Gutierrez, C., Wheeden, R. L.: Weighted Sobolev–Poincaré inequalities for Grushin type operators.Comm. Partial Differential Equations 19 (1994), 523–604. Zbl 0822.46032, MR 1265808 |
Reference:
|
[FKS] Fabes, E. B., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations.Comm. Partial Differential Equations 7 (1982), 77–116. Zbl 0498.35042, MR 0643158 |
Reference:
|
[FL] Franchi, B., Lanconelli, E.: An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnack inequality.Comm. Partial Differential Equations 9 (1984), 1237–1264. Zbl 0589.46023, MR 0764663 |
Reference:
|
[FLW] Franchi, B., Lu, G., Wheeden, R. L.: Representation formulas and Poincaré inequalities for Hörmander vector fields.(to appear). |
Reference:
|
[FS] Franchi, B., Serapioni, R.: Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 527–568. Zbl 0685.35046, MR 0963489 |
Reference:
|
[GaK] Gabidzashvili, M., Kokilashvili, V.: Two weight weak type inequalities for fractional type integrals.Preprint no. 45, Mathematical Institute Czech Acad. Sci., Praha, 1989, pp. 1–11. |
Reference:
|
[GGK] Genebashvili, I., Gogatishvili, A., Kokilashvili, V.: Criteria of general weak type inequalities for integral operators with positive kernels.Proc. Georgian Acad. Sci. Math. 1 (1993), 11–34. MR 1251491 |
Reference:
|
[GI] Greco, L., Iwaniec, T.: New inequalities for the Jacobian.preprint, 1993. MR 1259100 |
Reference:
|
[GW] Gatto, E. A., Wheeden, R. L.: Sobolev inequalities for products of powers.Trans. Amer. Math. Soc. 314 (1989), 727–743. Zbl 0686.46020, MR 0967312 |
Reference:
|
[J] Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander’s condition.Duke Math. J. 53 (1986), 503–523. Zbl 0614.35066, MR 0850547 |
Reference:
|
[L] Luecking, D. H.: Embedding derivatives of Hardy spaces into Lebesgue spaces.Proc. London Math. Soc. 63 (1991), 595–619. Zbl 0774.42011, MR 1127151 |
Reference:
|
[MW] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for fractional integrals.Trans. Amer. Math. Soc. 192 (1974), 261–275. Zbl 0289.26010, MR 0340523 |
Reference:
|
[P1] Perez, C.: On sufficient conditions for the boundedness of the Hardy-Littlewood maximal maximal operator between weighted $L^p$–spaces with different weights.(to appear). |
Reference:
|
[P2] Perez, C.: Two weighted inequalities for potential and fractional type maximal operators.Indiana Univ. Math. J. (to appear). Zbl 0809.42007, MR 1291534 |
Reference:
|
[P3] Perez, C.: A remark on weighted inequalities for general maximal operators.Proc. Amer. Math. Soc. (to appear). Zbl 0810.42008, MR 1107275 |
Reference:
|
[S] Sawyer, E. T.: A characterization of a two-weight norm inequality for maximal operators.Studia Math. 75 (1982), 1–11. Zbl 0508.42023, MR 0676801 |
Reference:
|
[Sh] Shirokov, N. A.: Some embedding theorems for spaces of harmonic functions.Zap. Nauchn. Sem. LOMI 56 (1976), 191–194. Zbl 0343.31003, MR 0481058 |
Reference:
|
[St] Stein, E. M.: Note on the class $L\log L$.Studia Math. 31 (1969), 305–310. Zbl 0182.47803, MR 0247534 |
Reference:
|
[SW1] Sawyer, E. T., Wheeden, R. L.: Carleson conditions for the Poisson integral.Indiana Univ. Math. J. 40 (1991), 639–676. Zbl 0748.42009, MR 1119192 |
Reference:
|
[SW2] Sawyer, E. T., Wheeden, R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces.Amer. J. Math. 114 (1992), 813–834. Zbl 0783.42011, MR 1175693 |
Reference:
|
[SWZ] Sawyer, E. T., Wheeden, R. L., Zhao, S.: Weighted norm inequalities for operators of potential type and fractional maximal functions.(to appear). Zbl 0873.42012, MR 1437584 |
Reference:
|
[U] Uchiyma, A.: Extension of the Hardy–Littlewood–Fefferman–Stein inequality.Pacific J. Math. 120 (1985), 229–255. MR 0808940 |
Reference:
|
[V] Verbitsky, I.: Imbedding theorems for the spaces of analytic functions with mixed norms.preprint, Acad. Sci., Kishinev, Moldova, 1987. |
Reference:
|
[W1] Wheeden, R. L.: A characterization of some weighted norm inequalities for the fractional maximal function.Studia Math. 107 (1993), 251–272. Zbl 0809.42009, MR 1247202 |
Reference:
|
[W2] Wheeden, R. L.: Norm inequalities for off-centered maximal operators.Publ. Matemàtiques 37 (1993), 429–441. Zbl 0848.42013, MR 1249242 |
Reference:
|
[Wa1] Watson, D.: Vector-valued inequalities, factorization, and extrapolation for a family of rough operators.J. Funct. Anal. (to appear). Zbl 0811.47050, MR 1272132 |
Reference:
|
[Wa2] Watson, D.: $A_1$ weights and weak type $(1,1)$ estimates for rough operators.(to appear). |
Reference:
|
[Wi] Wilson, J. M.: Weighted norm inequalities for the continuous square function.Trans. Amer. Math. Soc. 314 (1989), 661–692. MR 0972707 |
Reference:
|
[WWi] Wheeden, R. L., Wilson, J. M.: $L^p$, $L^q$ weighted norm inequalities for Bergman spaces.(to appear). Zbl 0920.42015 |
Reference:
|
[Z] Zani, S. L.: Weighted norm inequalities and boundary estimates for a class of positive operators and for fractional maximal functions on homogeneous spaces.Ph.D. thesis, Rutgers Univ., Dec., 1993. |
. |