Previous |  Up |  Next

Article

Title: Weights, one-sided operators, singular integrals and ergodic theorems (English)
Author: Martín-Reyes, Francisco Javier
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 5
Issue: 1994
Year:
Pages: 103-137
.
Category: math
.
MSC: 28D05
MSC: 42B20
MSC: 46E30
MSC: 47B38
MSC: 47G10
idZBL: Zbl 0870.47021
idMR: MR1322311
.
Date available: 2009-10-08T09:45:08Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702453
.
Reference: [A] Akcoglu, M.A.: A pointwise ergodic theorem in $L_p$-spaces.Canad. J. Math. 27 (1975), 1075-1082. Zbl 0326.47005, MR 0396901
Reference: [AFM] Aimar, H., Forzani, L., Martín, F.J. -Reye: On weighted inequalities for one-sided singular integrals.preprint.
Reference: [An] Andersen, K.F.: Weighted inequalities for maximal functions associated with general measures.Trans. Amer. Math. Soc. 326 (1991), 907–920. Zbl 0736.42013, MR 1038012
Reference: [AM] Andersen, K. F., Muckenhoupt, B.: Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions.Studia Math. 72 (1982), 9–26. Zbl 0501.47011, MR 0665888
Reference: [AS] Andersen, K.F., Sawyer, E.T.: Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators.Trans. Amer. Math. Soc. 308 (1988), 547–557. Zbl 0664.26002, MR 0930071
Reference: [B] Birkhoff, G. D.: Proof of the ergodic theorem.Proc. Nat. Acad. Sci. U.S.A. 17 (1931), 656–660. Zbl 0003.25602
Reference: [Br] Bradley, S.: Hardy inequalities with mixed norms.Canad. Math. Bull. (1978), 405–408. Zbl 0402.26006, MR 0523580
Reference: [Bru] Brunel, A.: Théorème ergodique pour les opérateurs positifs à moyennes bornées sur les espaces $L_p$ $(1<p<\infty )$.Ergodic Theory Dynamical Systems 12 (1993), 195-207. MR 1176617
Reference: [BE] Brunel, A., Emilion, R.: Sur les opérateurs positifs à moyennes bornées.C. R. Acad. Sci. Paris I  298 (1984), 103–106. Zbl 0582.47038, MR 0741070
Reference: [CF] Coifman, R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals.Studia Math. 51 (1974), 241–250. Zbl 0291.44007, MR 0358205
Reference: [CJR] Coifman, R., Jones, P., Francia, J. L. Rubio de: Constructive decomposition of $B.M.O.$ functions and factorization of $A_p$ weights.Proc. Amer. Math. Soc. 87 (1983), 675–676. MR 0687639
Reference: [DS] Dunford, N., Schwartz, J. T.: Convergence almost everywhere of operator averages.J. Rat. Mech. Anal. 5 (1956), 129–178. Zbl 0075.12102, MR 0077090
Reference: [FMT] Cabrera, L.M. Fernández, Martín, F.J. -Reye, Torrea, J. L.: On the ergodic averages and the ergodic Hilbert transform.preprint.
Reference: [G] Gallardo, D.: Weighted integral inqualities for the ergodic maximal operator and other sublinear operators. Convergence of the averages and the ergodic Hilbert transform.Studia Math. 94 (1989), 121–147. MR 1025742
Reference: [GM] Gallardo, D., Martín, F.J. -Reye: On the almost everywhere existence of the ergodic Hilbert transform.Proc. Amer. Math. Soc. 105 (1989), 636–643. MR 0939964
Reference: [GR] García, J. -Cuerv, Francia, J. L. Rubio de: Weighted norm inequalities and related topics.North-Holland, 1985. MR 0807149
Reference: [HMW] Hunt, R.A., Muckenhoupt, B., Wheeden, R.L.: Weighted norm inequalities for the conjugate function and the Hilbert transform.Trans. Amer. Math. Soc. 176 (1973), 261–274. MR 0312139
Reference: [I ] Ionescu, A. -Tulce: Ergodic properties of isometries in $L^p$-spaces, $1<p<\infty $.Bull. Amer. Math. Soc. 70 (1964), 366-371. MR 0206207
Reference: [JT] Jurkat, W., Troutman, J.: Maximal inequalities related to generalized a.e. continuity.Trans. Amer. Math. Soc. 252 (1979), 49–64. Zbl 0441.42023, MR 0534110
Reference: [K ] Kan, Charn-Huen: Ergodic properties for Lamperti operators.Canad. J. Math. 30 (1978), 1206–1214. MR 0511557
Reference: [Kr] Krengel, U.: Ergodic theorems.Walter de Gruyter, 1985. Zbl 0575.28009, MR 0797411
Reference: [KG] Kokilashvili, V., Gabidzashvili, M.: Two weight weak type inequalities for fractional type integrals..Preprint Math. Inst. Czech. Acad. Sci. Prague 45 (1989).
Reference: [LT] Lorente, M., Torre, A. de la: Weighted inequalities for some one-sided operators.preprint. Zbl 0895.26002
Reference: [M] Martín, F.J. -Reye: New proofs of weighted inequalities for the one sided Hardy-Littlewood maximal functions.Proc. Amer. Math. Soc. 117 (1993), 691–698. MR 1111435
Reference: [MO] Martín, F.J. -Reye, Salvador, P. Ortega: Ergodic power functions for mean bounded, invertible, positive operators.Studia Math. 91 (1988), 131–139. MR 0985080
Reference: [MOT] Martín, F.J. -Reye, Salvador, P. Ortega, Torre, A. de la: Weighted inequalities for one-sided maximal functions.Trans. Amer. Math. Soc. 319 (1990), 517–534. MR 0986694
Reference: [MPT] Martín, F.J. -Reye, Pick, L., Torre, A. de la: $A_\infty ^+$ condition.Canad. J. Math. 45 (1993), 1231–1244. MR 1247544
Reference: [MT1] Martín, F.J. -Reye, Torre, A. de la: The dominated ergodic estimate for mean bounded, invertible, positive operators.Proc. Amer. Math. Soc. 104 (1988), 69–75. MR 0958045
Reference: [MT2] Martín, F.J. -Reye, Torre, A. de la: On the almost everywhere convergence of the ergodic averages.Ergodic Theory Dynamical Systems 10 (1990), 141–149. MR 1053804
Reference: [MT3] Martín, F.J. -Reye, Torre, A. de la: Two weight norm inequalities for fractional one-sided maximal operators.Proc. Amer. Math. Soc. 117 (1993), 483–489. MR 1110548
Reference: [MT4] Martín, F.J. -Reye, Torre, A. de la: One-sided BMO spaces.J. London Math. Soc. 49 (1994), 529–542. MR 1271548
Reference: [MT5] Martín, F.J. -Reye, Torre, A. de la: Weights for general one-sided maximal operators.preprint.
Reference: [Mu] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226.. Zbl 0236.26016, MR 0293384
Reference: [OK] Opic, B., Kufner, A.: Hardy-type inequalities.Longman Scientific and Technical, 1990. Zbl 0698.26007, MR 1069756
Reference: [O1] Ortega, P.: Pesos para operadores maximales y teoremas ergódicos en espacios $L_p$, $L_{p,q}$ y de Orlicz.Thesis, Universidad de Málaga, 1991.
Reference: [O2] Ortega, P.: Convergence of the averages and finiteness of ergodic power functions in weighted $L^1$ spaces.Publ. Mat. 35 (1991), 465–473. MR 1201568
Reference: [O3] Ortega, P.: Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for functions in Lorentz spaces.Tôhoku Math. J. 45 (1993), 437–446. MR 1231566
Reference: [O4] Ortega, P.: Weighted Lorentz norm inequalities for the one-sided Hardy-Littlewood maximal functions and for the maximal ergodic operator.to appear in Canad. J. Math. MR 1295131
Reference: [O5] Ortega, P.: Weighted inequalities for the one-sided maximal functions in Orlicz spaces.to appear in Studia Math.. MR 1636403
Reference: [OP] Salvador, P. Ortega, Pick, L.: Two weight weak and extra-weak type inequalities for the one-sided maximal operator.Proc. Roy. Soc. Edinburgh Sect. A (1993), 1109–1118. Zbl 0806.42011, MR 1263909
Reference: [R] Francia, J. L. Rubio de: Factorization theory and $A_p$ weights.Amer. J. Math. 106 (1984), 533–546. MR 0745140
Reference: [S1] Sato, R.: A remark on the ergodic Hilbert transform.Math. J. Okayama Univ. 28 (1986), 159–163. Zbl 0641.47008, MR 0885025
Reference: [S2] Sato, R.: On pointwise ergodic theorems for positive operators.Studia Math. 97 (1990), 71–84. Zbl 0755.47005, MR 1083338
Reference: [S3] Sato, R.: Pointwise ergodic theorems for functions in Lorentz spaces $L_{pq}$ with $p\ne \infty $.Studia Math. 109 (1994), 209–216. MR 1269777
Reference: [Sa] Sawyer, E.: Weighted inequalities for the one sided Hardy-Littlewood maximal functions.Trans. Amer. Math. Soc. 297 (1986), 53–61. Zbl 0627.42009, MR 0849466
Reference: [T] Torchinsky, A.: Real Variable Methods in Harmonic Analysis.Academic Press, Inc., 1986. Zbl 0621.42001, MR 0869816
Reference: [W] Wiener, N.: The ergodic theorem.Duke Math. J. 5 (1939), 1–18. Zbl 0021.23501, MR 1546100
.

Files

Files Size Format View
NAFSA_094-1994-1_7.pdf 424.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo